A356692 Pascal-like triangle, where each entry is the sum of the four entries above it starting with 1 at the top.
1, 1, 1, 2, 2, 2, 4, 6, 6, 4, 10, 16, 20, 16, 10, 26, 46, 62, 62, 46, 26, 72, 134, 196, 216, 196, 134, 72, 206, 402, 618, 742, 742, 618, 402, 206, 608, 1226, 1968, 2504, 2720, 2504, 1968, 1226, 608, 1834, 3802, 6306, 8418, 9696, 9696, 8418, 6306, 3802, 1834, 5636, 11942, 20360, 28222, 34116, 36228, 34116, 28222, 20360, 11942, 5636
Offset: 0
Examples
T(4,0) = 10 because it is the sum of T(3,-2), T(3,-1), T(3,0), and T(3,1) which gives 0+0+4+6 = 10. Triangle begins: 1 1 1 2 2 2 4 6 6 4 10 16 20 16 10 26 46 62 62 46 26 ...
Links
- Alois P. Heinz, Rows n = 0..150, flattened
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1, add(T(n-1,j), j=k-2..k+1))) end: seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Aug 28 2022
-
Mathematica
T[0, 0] = 1; T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, T[n - 1, k - 2] + T[n - 1, k - 1] + T[n - 1, k] + T[n - 1, k + 1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten
Formula
T(n,k) = T(n,n-k).
Comments