cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A027935 Triangular array T read by rows: T(n,k)=t(n,2k), t given by A027926; 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 7, 1, 1, 2, 5, 12, 11, 1, 1, 2, 5, 13, 26, 16, 1, 1, 2, 5, 13, 33, 51, 22, 1, 1, 2, 5, 13, 34, 79, 92, 29, 1, 1, 2, 5, 13, 34, 88, 176, 155, 37, 1, 1, 2, 5, 13, 34, 89, 221, 365, 247, 46, 1, 1, 2, 5, 13, 34, 89, 232, 530, 709, 376, 56, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 1;
  1, 2, 4,  1:
  1, 2, 5,  7,  1;
  1, 2, 5, 12, 11,  1;
  1, 2, 5, 13, 26, 16, 1;
  ...
		

Crossrefs

The row sums of this bisection of the "Fibonacci array" A027926 are powers of 2, see A027948 for the other bisection.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..Int((2*n-2*k+1)/2) ], j-> Binomial(n-j, 2*(n-k-j))) ))); # G. C. Greubel, Sep 27 2019
  • Magma
    T:= func< n,k | &+[Binomial(n-j, 2*(n-k-j)) : j in [0..Floor((2*n -2*k+1)/2)]] >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2019
    
  • Maple
    T:= proc(n, k) option remember;
         add( binomial(n-j, 2*(n-k-j)), j=0..floor((2*n - 2*k+1)/2))
       end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Sep 27 2019
  • Mathematica
    T[n_, k_]:= Sum[Binomial[n-j, 2*(n-k-j)], {j,0,Floor[(2*n-2*k+1)/2]}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 27 2019 *)
  • PARI
    T(n,k) = sum(j=0,(2*n-2*k+1)\2, binomial(n-j, 2*(n-k-j)));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 27 2019
    
  • Sage
    [[ sum(binomial(n-j, 2*(n-k-j)) for j in (0..floor((2*n-2*k+1)/2)) ) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 27 2019
    

Formula

T(n,k) = Sum_{j=0..floor((2*n-2*k-1)/2)} binomial(n-j, 2*(n-k-j)). - G. C. Greubel, Sep 27 2019

A027948 Triangular array T read by rows: T(n,k) = t(n,2k+1) for 0 <= k <= n, T(n,n)=1, t given by A027926, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 7, 4, 1, 1, 3, 8, 14, 5, 1, 1, 3, 8, 20, 25, 6, 1, 1, 3, 8, 21, 46, 41, 7, 1, 1, 3, 8, 21, 54, 97, 63, 8, 1, 1, 3, 8, 21, 55, 133, 189, 92, 9, 1, 1, 3, 8, 21, 55, 143, 309, 344, 129, 10, 1, 1, 3, 8, 21, 55, 144, 364, 674, 591, 175, 11, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins with:
  1;
  1, 1;
  1, 2, 1;
  1, 3, 3,  1;
  1, 3, 7,  4,  1;
  1, 3, 8, 14,  5,  1;
  1, 3, 8, 20, 25,  6, 1;
  1, 3, 8, 21, 46, 41, 7, 1; ...
		

Crossrefs

The row sums of this (slightly extended) bisection of the "Fibonacci array" A027926 are powers of 2, see A027935 for the other bisection.

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return Sum([0..n-k], j-> Binomial(n-j, 2*(n-k-j)-1) );
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 29 2019
  • Magma
    T:= func< n,k | k eq n select 1 else &+[Binomial(n-j, 2*(n-k-j) -1): j in [0..n-k]] >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2019
    
  • Maple
    T:= proc(n, k)
          if k=n then 1
          else add(binomial(n-j, 2*(n-k-j)-1), j=0..n-k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Sep 29 2019
  • Mathematica
    T[n_, k_]:= If[k==n, 1, Sum[Binomial[n-j, 2*(n-k-j)-1], {j, 0, n-k}]];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 29 2019 *)
  • PARI
    T(n,k) = if(k==n, 1, sum(j=0,n-k, binomial(n-j, 2*(n-k-j)-1)) );
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 29 2019
    
  • Sage
    def T(n, k):
        if (k==n): return 1
        else: return sum(binomial(n-j, 2*(n-k-j)-1) for j in (0..n-k))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 29 2019
    

Formula

T(n,k) = Sum_{j=0..n-k} binomial(n-j, 2*(n-k-j) -1) with T(n,n)=1 in the region n >= 0, 0 <= k <= n. - G. C. Greubel, Sep 29 2019

Extensions

Name edited by G. C. Greubel, Sep 29 2019

A027992 a(n) = 1*T(n,0) + 2*T(n,1) + ... + (2n+1)*T(n,2n), T given by A027926.

Original entry on oeis.org

1, 6, 22, 66, 178, 450, 1090, 2562, 5890, 13314, 29698, 65538, 143362, 311298, 671746, 1441794, 3080194, 6553602, 13893634, 29360130, 61865986, 130023426, 272629762, 570425346, 1191182338, 2483027970, 5167382530, 10737418242
Offset: 0

Views

Author

Keywords

Comments

Also total sum of squares of parts in all compositions of n (offset 1). Total sum of cubes of parts in all compositions of n is (13*n-36)*2^(n-1)+6*n+18 with g.f. x*(1+4x+x^2)/((2x-1)(1-x))^2, A271638; total sum of fourth powers of parts in all compositions of n is (75*n-316)*2^(n-1)+12*n^2+72*n+158 with g.f. x*(1+x)*(x^2+10*x+1)/((2*x-1)^2*(1-x)^3); total sum of fifth powers of parts in all compositions of n is (541*n-3060)*2^(n-1)+20*n^3+180*n^2+790*n+1530. - Vladeta Jovovic, Mar 18 2005
Let M = the 3 X 3 matrix [(1,0,0),(1,2,0),(1,3,2)] and column vector V = [1,1,1]. a(n) is the lower term in the product M^n * V.

Crossrefs

Programs

  • Mathematica
    M = {{1, 0, 0}, {1, 2, 0}, {1, 3, 2}};
    a[n_] := MatrixPower[M, n].{1, 1, 1} // Last;
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 12 2018, from PARI *)
  • PARI
    vector(40, n, n--; ([1,0,0;1,2,0;1,3,2]^n*[1,1,1]~)[3]) \\ Michel Marcus, Aug 06 2015

Formula

a(n) = 2^n*(3n-1)+2 = A048496(n+1)-1 = A053565(n+1)+2. - Ralf Stephan, Jan 15 2004
a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). G.f.: (1+x)/((1-x)*(1-2*x)^2). - Colin Barker, Apr 04 2012

A027933 a(n) = T(n, 2*n-10), T given by A027926.

Original entry on oeis.org

1, 2, 5, 13, 34, 89, 232, 596, 1490, 3588, 8273, 18228, 38403, 77533, 150438, 281403, 509015, 892926, 1523117, 2532359, 4112704, 6536993, 10186540, 15586342, 23449376, 34731776, 50700937, 73018870, 103843433, 145950389, 202879594, 279108997, 380260541
Offset: 5

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([5..40], n-> Sum([0..5], k-> Binomial(n-k, 10-2*k)) ); # G. C. Greubel, Sep 27 2019
  • Magma
    [&+[Binomial(n-k, 10-2*k): k in [0..5]] : n in [5..40]]; // G. C. Greubel, Sep 27 2019
    
  • Maple
    seq(add(binomial(n-k, 10-2*k), k=0..5), n=5..40); # G. C. Greubel, Sep 27 2019
  • Mathematica
    Table[Sum[Binomial[n-k, 10-2k], {k,0,5}], {n,5,40}] (* or *)
    Drop[#, 5] &@ CoefficientList[Series[x^5(1-x+x^2)(1-5x+9x^2-5x^3+x^4)(1- 3x+5x^2-3x^3+x^4)/(1-x)^11, {x, 0, 37}], x] (* Michael De Vlieger, Feb 17 2016 *)
  • PARI
    Vec(x^5*(1-x+x^2)*(1-5*x+9*x^2-5*x^3+x^4)*(1-3*x+5*x^2-3*x^3+x^4) / (1-x)^11 + O(x^40)) \\ Colin Barker, Feb 17 2016
    
  • PARI
    vector(40, n, sum(k=0,5, binomial(n+4-k, 10-2*k)) ) \\ G. C. Greubel, Sep 27 2019
    
  • Sage
    [sum(binomial(n-k, 10-2*k) for k in (0..5)) for n in (5..40)] # G. C. Greubel, Sep 27 2019
    

Formula

a(n) = Sum_{k=0..5} binomial(n-k, 10-2*k). - Len Smiley, Oct 20 2001
a(n) = 34 -9161*n/280 -101897*n^3/20160 +794293*n^2/50400 -287*n^5/1280 +438209*n^4/362880 +5593*n^6/172800 -47*n^7/13440 -n^9/80640 +n^8/3780 +n^10/3628800. - R. J. Mathar, Oct 05 2009
G.f.: x^5*(1-x+x^2)*(1-5*x+9*x^2-5*x^3+x^4)*(1-3*x+5*x^2-3*x^3+x^4) / (1-x)^11. - Colin Barker, Feb 17 2016

A027988 Greatest number in row n of array T given by A027926.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 51, 97, 189, 365, 709, 1383, 2683, 5270, 10220, 20175, 39130, 77533, 150438, 298925, 580328, 1155661, 2245004, 4478413, 8705686, 17390359, 33828704, 67650909, 131901368, 263589730, 515037942, 1028483089
Offset: 0

Views

Author

Keywords

Comments

Also greatest number in row n of the Fibonacci-Pascal matrix A105809. - Jason Riggle (jriggle(AT)uchicago.edu), Aug 22 2006
For n > 0 also largest term in row n of the triangle in A228074. - Reinhard Zumkeller, Aug 15 2013

Programs

A027989 a(n) = self-convolution of row n of array T given by A027926.

Original entry on oeis.org

1, 3, 10, 33, 105, 324, 977, 2895, 8462, 24465, 70101, 199368, 563425, 1583643, 4430290, 12342849, 34262337, 94800780, 261545777, 719697255, 1975722326, 5412138033, 14796520365, 40380240528, 110016825025, 299285288499, 813011578522, 2205652007265, 5976479585817
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of all columns in stack polyominoes of perimeter 2n+4. - Emanuele Munarini, Apr 07 2011

Crossrefs

Programs

  • Mathematica
    Table[((5+4n)Fibonacci[1+2n]-(1+2n)Fibonacci[2n])/5,{n,0,28}] (* Emanuele Munarini, Apr 07 2011 *)
  • Maxima
    makelist(((5+4*n)*fib(1+2*n)-(1+2*n)*fib(2*n))/5,n,0,20); /* Emanuele Munarini, Apr 07 2011 */
    
  • PARI
    Vec((1-3*x+3*x^2)/(1-3*x+x^2)^2+O(x^66)) /* Joerg Arndt, Apr 08 2011 */

Formula

a(n) = (2/5)*(n + 1)*F(2*n+3) + (1/5)*F(2*n+2) - (4/5)*(n + 1)*F(2*n), where F(n) = A000045(n). - Ralf Stephan, May 13 2004
From Emanuele Munarini, Apr 07 2011: (Start)
a(n) = ((4*n + 5)*F(2*n+1) - (2*n + 1)*F(2*n))/5, where F(n) = A000045(n).
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*(k + 1).
G.f.: (1 - 3*x + 3*x^2)/(1 - 3*x + x^2)^2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). (End)

A027991 a(n) = Sum{T(n,k)*T(n,2n-k)}, 0<=k<=n-1, T given by A027926.

Original entry on oeis.org

1, 3, 12, 40, 130, 404, 1227, 3653, 10720, 31090, 89316, 254568, 720757, 2029095, 5684340, 15855964, 44061862, 122032508, 336966015, 927953705, 2549229256, 6987648358, 19115124552, 52194037200, 142274514025, 387215773899
Offset: 1

Views

Author

Keywords

Comments

From Wolfdieter Lang, Jan 02 2012: (Start)
a(n) = A024458(2*n-1), n>=1 (bisection, odd arguments).
chate(n):=a(n+1), n>=0, is the even part of the bisection of the half-convolution of the sequence A000045(n+1), n>=0, with itself. See a comment on A201204 for the definition of half-convolution. There one finds also the rule for the o.g.f.s of the bisection. Here the o.g.f. of the sequence chate(n), n>=0, is Chate(x):= (Ce(x)+U2(x))/2 with Ce(x)=(1-x+x^2)/(1-3*x+x^2)^2, the o.g.f. of A054444(n), and
U2(x)=(1-x)/((1+x)*(1-3*x+x^2)), the o.g.f. of A007598(n+1), n>=0. This results (after multiplying with x) in the o.g.f. given below in the formula section. It is equivalent to the explicit formula given there, as can be seen after a partial fraction decomposition of the o.g.f.
(End)

Crossrefs

Formula

a(n) = (1/5)[n*F(2n+2) - n*F(2n-2) + F(2n-1) - (-1)^n], F(n)=A000045(n).
O.g.f.: x*(1-2*x+2*x^2)/((1-3*x+x^2)^2*(1+x)). See the comment above. - Wolfdieter Lang, Jan 02 2012

A027928 a(n) = T(n, 2*n-5), T given by A027926.

Original entry on oeis.org

1, 3, 8, 20, 46, 97, 189, 344, 591, 967, 1518, 2300, 3380, 4837, 6763, 9264, 12461, 16491, 21508, 27684, 35210, 44297, 55177, 68104, 83355, 101231, 122058, 146188, 174000, 205901, 242327, 283744, 330649, 383571, 443072
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([3..40], n-> (n-2)*(n^4 -8*n^3 +39*n^2 -92*n +180)/120); # G. C. Greubel, Sep 06 2019
  • Magma
    [(n-2)*(n^4-8*n^3+39*n^2-92*n+180)/120: n in [3..40]]; // Vincenzo Librandi, Apr 22 2012
    
  • Maple
    seq(binomial(n,n-1)+binomial(n+1,n-2)+binomial(n+2,n-3), n=1..35); # Zerinvary Lajos, May 29 2007
  • Mathematica
    CoefficientList[Series[(1-3*x+5*x^2-3*x^3+x^4)/(1-x)^6,{x,0,40}],x] (* Vincenzo Librandi, Apr 22 2012 *)
  • PARI
    vector(40, n, m=n+2; n*(m^4 -8*m^3 +39*m^2 -92*m +180)/120) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    [(n-2)*(n^4 -8*n^3 +39*n^2 -92*n +180)/120 for n in (3..40)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = (n-2)*(n^4 - 8*n^3 + 39*n^2 - 92*n + 180)/120.
a(n) = C(n,n-1) + C(n+1,n-2) + C(n+2,n-3) with offset 1. - Zerinvary Lajos, May 29 2007
G.f.: x^3*(1 - 3*x + 5*x^2 - 3*x^3 + x^4)/(1-x)^6. - Colin Barker, Mar 18 2012
E.g.f.: 3 + x -(360 - 240*x + 60*x^2 - 20*x^3 - x^5)*exp(x)/120. - G. C. Greubel, Sep 06 2019

A027929 a(n) = T(n, 2*n-6), T given by A027926.

Original entry on oeis.org

1, 2, 5, 13, 33, 79, 176, 365, 709, 1300, 2267, 3785, 6085, 9465, 14302, 21065, 30329, 42790, 59281, 80789, 108473, 143683, 187980, 243157, 311261, 394616, 495847, 617905, 764093, 938093, 1143994, 1386321, 1670065, 2000714
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A228074.

Programs

  • GAP
    List([3..40], n-> (3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720); G. C. Greubel, Sep 06 2019
  • Magma
    [(3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720: n in [3..40]]; // G. C. Greubel, Sep 06 2019
    
  • Maple
    seq((3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720, n=3..40); # G. C. Greubel, Sep 06 2019
  • Mathematica
    CoefficientList[Series[(1-x+x^2)(1-4x+7x^2-4x^3+x^4)/(1-x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 18 2013 *)
  • PARI
    vector(40, n, m=n+2; (3600 -3420*m +1684*m^2 -525*m^3 +115*m^4 -15*m^5 +m^6)/720) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    [(3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720 for n in (3..40)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = Sum_{k=0..3} binomial(n-k, 6-2*k). - Len Smiley, Oct 20 2001
From Colin Barker, May 01 2012: (Start)
a(n) = (3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720.
G.f.: x^3*(1-x+x^2)*(1-4*x+7*x^2-4*x^3+x^4)/(1-x)^7. (End)
E.g.f.: (3600 - 2160*x + 720*x^2 - 120*x^3 + 30*x^4 + x^6)*exp(x)/720 - 5 + 2*x - x^2/2. - G. C. Greubel, Sep 06 2019

A027930 a(n) = T(n, 2*n-7), T given by A027926.

Original entry on oeis.org

1, 3, 8, 21, 54, 133, 309, 674, 1383, 2683, 4950, 8735, 14820, 24285, 38587, 59652, 89981, 132771, 192052, 272841, 381314, 524997, 712977, 956134, 1267395, 1662011, 2157858, 2775763, 3539856, 4477949, 5621943, 7008264, 8678329, 10679043, 13063328, 15890685
Offset: 4

Views

Author

Keywords

Crossrefs

Cf. A228074.

Programs

  • GAP
    List([4..40], n-> Binomial(n-1, n-7) + (n-3)*((n-3)^4 +15*(n-3)^2 +104)/120); # G. C. Greubel, Sep 06 2019
  • Magma
    [Binomial(n-1, n-7) + (n-3)*((n-3)^4 +15*(n-3)^2 +104)/120: n in [4..40]]; // G. C. Greubel, Sep 06 2019
    
  • Maple
    seq(binomial(n-3,n-4)+binomial(n-2,n-5)+binomial(n-1,n-6)+binomial(n,n-7) , n=4..50); # Zerinvary Lajos, May 29 2007
  • Mathematica
    Table[Total[Binomial[First[#],Last[#]]&/@Table[{n+i,n-1-i},{i,0,3}]],{n,35}] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1}, {1,3,8,21,54,133,309,674}, 35] (* Harvey P. Dale, Jun 23 2011 *)
  • PARI
    vector(40, n, binomial(n+3, n-4) + n*(n^4 +15*n^2 +104)/120) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    [binomial(n-1, n-7) + (n-3)*((n-3)^4 +15*(n-3)^2 +104)/120 for n in (4..40)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = Sum_{k=0..3} binomial(n-k, 7-2k). - Len Smiley, Oct 20 2001
a(n) = C(n-3,n-4)+C(n-2,n-5)+C(n-1,n-6)+C(n,n-7). - Zerinvary Lajos, May 29 2007
From R. J. Mathar, Oct 05 2009: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: x^4*(1 - x + x^2)*(1 - 4*x + 7*x^2 - 4*x^3 + x^4)/(1-x)^8. (End)
From G. C. Greubel, Sep 06 2019: (Start)
a(n) = binomial(n-1, n-7) + (n-3)*((n-3)^4 + 15*(n-3)^2 + 104)/120.
E.g.f.: x*(5040 + 2520*x + 1680*x^2 + 630*x^3 + 168*x^4 + 21*x^5 + x^6)*exp(x)/5040. (End)
Showing 1-10 of 43 results. Next