A027949 a(n) = T(2n,n+1), T given by A027948.
1, 4, 25, 97, 309, 894, 2462, 6610, 17519, 46135, 121115, 317484, 831660, 2177872, 5702389, 14929789, 39087537, 102333450, 267913514, 701407870, 1836310955, 4807525939, 12586267895, 32951278872, 86267569944, 225851432284, 591286728337, 1548008754265
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-13,13,-6,1).
Programs
-
GAP
Concatenation([1], List([2..40], n-> Fibonacci(2*n+4) -(2*n^2 +3*n +3)) ); # G. C. Greubel, Sep 29 2019
-
Magma
[1] cat [Fibonacci(2*n+4) -(2*n^2 +3*n +3): n in [2..40]]; // G. C. Greubel, Sep 29 2019
-
Maple
with(combinat); seq(`if`(n=1, 1, fibonacci(2*n+4) -(2*n^2 +3*n +3)), n=1..40); # G. C. Greubel, Sep 29 2019
-
Mathematica
Join[{1},Table[Fibonacci[2n+4]-2n^2-3n-3,{n,2,40}]] (* or *) Join[ {1}, LinearRecurrence[{6,-13,13,-6,1}, {4,25,97,309,894}, 40]] (* Harvey P. Dale, Apr 20 2012 *) CoefficientList[Series[(x^5-6x^4+14x^3-14x^2+2x-1)/((x-1)^3(x^2-3x+1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 20 2014 *)
-
PARI
Vec(x*(x^5-6*x^4+14*x^3-14*x^2+2*x-1)/((x-1)^3*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Nov 19 2014
-
PARI
vector(40, n, if(n==1,1,fibonacci(2*n+4) -(2*n^2 +3*n +3)) ) \\ G. C. Greubel, Sep 29 2019
-
Sage
[1]+[fibonacci(2*n+4) -(2*n^2 +3*n +3) for n in (2..40)] # G. C. Greubel, Sep 29 2019
Formula
For n>1, a(n) = Fibonacci(2*n+4) - (2*n^2 + 3*n + 3).
a(1)=1, a(2)=4, a(3)=25, a(4)=97, a(5)=309, a(6)=894, a(n) = 6*a(n-1) - 13*a(n-2) +13*a(n-3) -6*a(n-4) +a(n-5). - Harvey P. Dale, Apr 20 2012
G.f.: x*(1 -2*x +14*x^2 -14*x^3 +6*x^4 -x^5)/((1-x)^3*(1-3*x+x^2)). - Colin Barker, Nov 19 2014
a(n) = Sum_{j=0..n-1} binomial(2*n-j, j+3), with a(1)=1. - G. C. Greubel, Sep 29 2019
Extensions
More terms from Harvey P. Dale, Apr 20 2012
Comments