A027936 Uniquification of array T given by A027935.
1, 2, 4, 5, 7, 11, 12, 13, 16, 22, 26, 29, 33, 34, 37, 46, 51, 56, 67, 79, 88, 89, 92, 106, 121, 137, 154, 155, 172, 176, 191, 211, 221, 232, 233, 247, 254, 277, 301, 326, 352, 365, 376, 379, 407, 436, 466, 497, 529, 530, 551, 562, 596
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A027935.
Programs
-
Mathematica
A027935[n_, k_]:= A027935[n, k]= Sum[Binomial[n-j, 2*(n-k-j)], {j,0,Floor[(2*n-2*k+ 1)/2]}]; A027936= Table[A027935[n,k], {n,0,225}, {k,0,n}]//Flatten//Union; Table[A027936[[n]], {n,100}] (* G. C. Greubel, Jun 06 2025 *)
-
SageMath
@CachedFunction def A027935(n,k): return sum(binomial(n-j, 2*(n-k-j)) for j in range(int((2*n-2*k+1)/2+1)) ) A027936 = sorted(set(flatten([[ A027935(n,k) for k in range(n+1)] for n in range(103)]))) print([A027936[n] for n in range(100)]) # G. C. Greubel, Jun 06 2025