A027942 a(n) = T(2n+1, n+2), T given by A027935.
1, 11, 51, 176, 530, 1490, 4043, 10773, 28445, 74770, 196116, 513876, 1345861, 3524111, 9226935, 24157220, 63245318, 165579398, 433493615, 1134902265, 2971214081, 7778740966, 20365009896, 53316289896, 139583861065, 365435294675, 956722024443, 2504730780248
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-13,13,-6,1).
Programs
-
GAP
List([1..40], n-> Fibonacci(2*n+5) -(2*n^2+5*n+5) ); # G. C. Greubel, Sep 28 2019
-
Magma
[Fibonacci(2*n+5)-2*n^2-5*n-5: n in [1..30]]; // Vincenzo Librandi, Apr 18 2011
-
Maple
with(combinat): seq(fibonacci(2*n+5) -(2*n^2+5*n+5), n=1..40); # G. C. Greubel, Sep 28 2019
-
Mathematica
CoefficientList[Series[(1+5x-2x^2)/((1-x)^3*(1-3x+x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 18 2013 *) LinearRecurrence[{6,-13,13,-6,1},{1,11,51,176,530},40] (* Harvey P. Dale, Aug 18 2017 *)
-
PARI
vector(40, n, fibonacci(2*n+5) -(2*n^2+5*n+5) ) \\ G. C. Greubel, Sep 28 2019
-
Sage
[fibonacci(2*n+5) -(2*n^2+5*n+5) for n in (1..40)] # G. C. Greubel, Sep 28 2019
Formula
a(n) = Fibonacci(2*n+5) - 2*n^2 - 5*n - 5.
G.f.: x*(1+5*x-2*x^2)/((1-x)^3*(1-3*x+x^2)). - Colin Barker, Sep 20 2012
Extensions
More terms from Vincenzo Librandi, Oct 18 2013