cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027942 a(n) = T(2n+1, n+2), T given by A027935.

Original entry on oeis.org

1, 11, 51, 176, 530, 1490, 4043, 10773, 28445, 74770, 196116, 513876, 1345861, 3524111, 9226935, 24157220, 63245318, 165579398, 433493615, 1134902265, 2971214081, 7778740966, 20365009896, 53316289896, 139583861065, 365435294675, 956722024443, 2504730780248
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..40], n-> Fibonacci(2*n+5) -(2*n^2+5*n+5) ); # G. C. Greubel, Sep 28 2019
  • Magma
    [Fibonacci(2*n+5)-2*n^2-5*n-5: n in [1..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    with(combinat): seq(fibonacci(2*n+5) -(2*n^2+5*n+5), n=1..40); # G. C. Greubel, Sep 28 2019
  • Mathematica
    CoefficientList[Series[(1+5x-2x^2)/((1-x)^3*(1-3x+x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 18 2013 *)
    LinearRecurrence[{6,-13,13,-6,1},{1,11,51,176,530},40] (* Harvey P. Dale, Aug 18 2017 *)
  • PARI
    vector(40, n, fibonacci(2*n+5) -(2*n^2+5*n+5) ) \\ G. C. Greubel, Sep 28 2019
    
  • Sage
    [fibonacci(2*n+5) -(2*n^2+5*n+5) for n in (1..40)] # G. C. Greubel, Sep 28 2019
    

Formula

a(n) = Fibonacci(2*n+5) - 2*n^2 - 5*n - 5.
G.f.: x*(1+5*x-2*x^2)/((1-x)^3*(1-3*x+x^2)). - Colin Barker, Sep 20 2012

Extensions

More terms from Vincenzo Librandi, Oct 18 2013