A027948 Triangular array T read by rows: T(n,k) = t(n,2k+1) for 0 <= k <= n, T(n,n)=1, t given by A027926, n >= 0.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 7, 4, 1, 1, 3, 8, 14, 5, 1, 1, 3, 8, 20, 25, 6, 1, 1, 3, 8, 21, 46, 41, 7, 1, 1, 3, 8, 21, 54, 97, 63, 8, 1, 1, 3, 8, 21, 55, 133, 189, 92, 9, 1, 1, 3, 8, 21, 55, 143, 309, 344, 129, 10, 1, 1, 3, 8, 21, 55, 144, 364, 674, 591, 175, 11, 1
Offset: 0
Examples
Triangle begins with: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 3, 7, 4, 1; 1, 3, 8, 14, 5, 1; 1, 3, 8, 20, 25, 6, 1; 1, 3, 8, 21, 46, 41, 7, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
GAP
T:= function(n,k) if k=n then return 1; else return Sum([0..n-k], j-> Binomial(n-j, 2*(n-k-j)-1) ); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 29 2019
-
Magma
T:= func< n,k | k eq n select 1 else &+[Binomial(n-j, 2*(n-k-j) -1): j in [0..n-k]] >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2019
-
Maple
T:= proc(n, k) if k=n then 1 else add(binomial(n-j, 2*(n-k-j)-1), j=0..n-k) fi end: seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Sep 29 2019
-
Mathematica
T[n_, k_]:= If[k==n, 1, Sum[Binomial[n-j, 2*(n-k-j)-1], {j, 0, n-k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 29 2019 *)
-
PARI
T(n,k) = if(k==n, 1, sum(j=0,n-k, binomial(n-j, 2*(n-k-j)-1)) ); for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 29 2019
-
Sage
def T(n, k): if (k==n): return 1 else: return sum(binomial(n-j, 2*(n-k-j)-1) for j in (0..n-k)) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 29 2019
Formula
T(n,k) = Sum_{j=0..n-k} binomial(n-j, 2*(n-k-j) -1) with T(n,n)=1 in the region n >= 0, 0 <= k <= n. - G. C. Greubel, Sep 29 2019
Extensions
Name edited by G. C. Greubel, Sep 29 2019