cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027948 Triangular array T read by rows: T(n,k) = t(n,2k+1) for 0 <= k <= n, T(n,n)=1, t given by A027926, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 7, 4, 1, 1, 3, 8, 14, 5, 1, 1, 3, 8, 20, 25, 6, 1, 1, 3, 8, 21, 46, 41, 7, 1, 1, 3, 8, 21, 54, 97, 63, 8, 1, 1, 3, 8, 21, 55, 133, 189, 92, 9, 1, 1, 3, 8, 21, 55, 143, 309, 344, 129, 10, 1, 1, 3, 8, 21, 55, 144, 364, 674, 591, 175, 11, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins with:
  1;
  1, 1;
  1, 2, 1;
  1, 3, 3,  1;
  1, 3, 7,  4,  1;
  1, 3, 8, 14,  5,  1;
  1, 3, 8, 20, 25,  6, 1;
  1, 3, 8, 21, 46, 41, 7, 1; ...
		

Crossrefs

The row sums of this (slightly extended) bisection of the "Fibonacci array" A027926 are powers of 2, see A027935 for the other bisection.

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return Sum([0..n-k], j-> Binomial(n-j, 2*(n-k-j)-1) );
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 29 2019
  • Magma
    T:= func< n,k | k eq n select 1 else &+[Binomial(n-j, 2*(n-k-j) -1): j in [0..n-k]] >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2019
    
  • Maple
    T:= proc(n, k)
          if k=n then 1
          else add(binomial(n-j, 2*(n-k-j)-1), j=0..n-k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Sep 29 2019
  • Mathematica
    T[n_, k_]:= If[k==n, 1, Sum[Binomial[n-j, 2*(n-k-j)-1], {j, 0, n-k}]];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 29 2019 *)
  • PARI
    T(n,k) = if(k==n, 1, sum(j=0,n-k, binomial(n-j, 2*(n-k-j)-1)) );
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 29 2019
    
  • Sage
    def T(n, k):
        if (k==n): return 1
        else: return sum(binomial(n-j, 2*(n-k-j)-1) for j in (0..n-k))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 29 2019
    

Formula

T(n,k) = Sum_{j=0..n-k} binomial(n-j, 2*(n-k-j) -1) with T(n,n)=1 in the region n >= 0, 0 <= k <= n. - G. C. Greubel, Sep 29 2019

Extensions

Name edited by G. C. Greubel, Sep 29 2019