cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027953 a(0)=1, a(n) = Fibonacci(2n+4) - (2n+3).

Original entry on oeis.org

1, 3, 14, 46, 133, 364, 972, 2567, 6746, 17690, 46345, 121368, 317784, 832011, 2178278, 5702854, 14930317, 39088132, 102334116, 267914255, 701408690, 1836311858, 4807526929, 12586268976, 32951280048, 86267571219, 225851433662
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..40], n-> Fibonacci(2*n+4) -(3 +2*n) )); # G. C. Greubel, Sep 29 2019
  • Magma
    [1] cat [Fibonacci(2*n+4) -(3 +2*n): n in [1..40]]; // G. C. Greubel, Sep 29 2019
    
  • Maple
    with(combinat); seq(`if`(n=0,1, fibonacci(2*n+4) -(3 +2*n)), n=0..40); # G. C. Greubel, Sep 29 2019
  • Mathematica
    Join[{1},Table[Fibonacci[2n+4]-(2n+3),{n,30}]] (* or *) LinearRecurrence[ {5,-8,5,-1},{1,3,14,46,133},30] (* Harvey P. Dale, Oct 04 2017 *)
  • PARI
    vector(40, n, my(m=n-1); if(m==0, 1, fibonacci(2*m+4) -(3 +2*m)) ) \\ G. C. Greubel, Sep 29 2019
    
  • Sage
    [1]+[fibonacci(2*n+4) -(3 +2*n) for n in (1..40)] # G. C. Greubel, Sep 29 2019
    

Formula

a(n) = T(2n+1, n+1), T given by A027948.
G.f.: (1-2*x+7*x^2-5*x^3+x^4)/((1-3*x+x^2)*(1-x)^2). - Vladeta Jovovic, Mar 27 2003
a(n) = Sum_{j=0..n} binomial(2*n-j+1, j+2), with a(0)=1. - G. C. Greubel, Sep 29 2019

Extensions

More terms from Vladeta Jovovic, Mar 27 2003