cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027974 a(n) = Sum_{k=1..n+1} A027960(n+1, n+1+k).

Original entry on oeis.org

1, 5, 14, 35, 81, 180, 389, 825, 1726, 3575, 7349, 15020, 30561, 61965, 125294, 252795, 509161, 1024100, 2057549, 4130225, 8284926, 16609455, 33282989, 66669660, 133507081, 267285605, 535010414, 1070731475, 2142612801, 4287086100, 8577182549, 17159235945
Offset: 0

Views

Author

Keywords

Comments

The former name, a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A027960, was in error with the data given. [This double summation gives A023537(n+1), or A027960(n+2, n+4) for n >= 0]. - G. C. Greubel, Jun 08 2025

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(n+3) - Lucas(1,-1,n+4)[2]); # G. C. Greubel, Sep 26 2019
  • Magma
    [2^(n+3) - Lucas(n+4): n in [0..30]]; // G. C. Greubel, Sep 26 2019
    
  • Maple
    with(combinat); f:=fibonacci; seq(2^(n+3) - f(n+5) - f(n+3), n=0..30); # G. C. Greubel, Sep 26 2019
  • Mathematica
    Table[2^(n+3) - LucasL[n+4], {n,0,30}] (* G. C. Greubel, Sep 26 2019 *)
  • PARI
    vector(31, n, f=fibonacci; 2^(n+2) - f(n+4) - f(n+2)) \\ G. C. Greubel, Sep 26 2019
    
  • SageMath
    def A027974(n): return 2**(n+3) - lucas_number2(n+4,1,-1)
    [A027974(n) for n in range(31)] # G. C. Greubel, Sep 26 2019; Jun 08 2025
    

Formula

a(n) = 2^(n+3) - Fibonacci(n+5) - Fibonacci(n+3).
a(n) = A101220(4, 2, n+1).
G.f.: (1+2*x)/((1-2*x)*(1-x-x^2)). - R. J. Mathar, Sep 22 2008
a(n) = 2*a(n-1) + A000032(n+1). - David A. Corneth, Apr 16 2015
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3). - Colin Barker, Feb 17 2016
From G. C. Greubel, Jun 08 2025: (Start)
a(n) = 2^(n+3) - A000032(n+4).
E.g.f.: 8*exp(2*x) - exp(x/2)*( 7*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2) ). (End)