A027981 a(n) = Sum_{k=0..2*n} (k+1)*T(n,k), T given by A027960.
1, 10, 40, 124, 340, 868, 2116, 4996, 11524, 26116, 58372, 129028, 282628, 614404, 1327108, 2850820, 6094852, 12976132, 27525124, 58195972, 122683396, 257949700, 541065220, 1132462084, 2365587460, 4932501508, 10267656196, 21340618756, 44291850244, 91804925956, 190052302852, 392989507588, 811748818948, 1675037245444, 3453153705988
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
Crossrefs
Cf. A027960.
Programs
-
Magma
A027981:= func< n | 3*2^n*(2*n-1) + 4 >; // G. C. Greubel, Jun 07 2025
-
Mathematica
LinearRecurrence[{5,-8,4},{1,10,40},30] (* Harvey P. Dale, Apr 17 2015 *)
-
Python
def A027981(n): return 3*2**n*(2*n-1) + 4 # G. C. Greubel, Jun 07 2025
Formula
a(2*n+1) = 6*(4*n+1) * 4^n + 4. - Ralf Stephan, Mar 22 2004
From R. J. Mathar, May 22 2013: (Start)
a(n) = 3*2^n*(2*n-1) + 4.
G.f.: (1 + 5*x - 2*x^2)/( (1-x)*(1-2*x)^2 ). (End)
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3), with a(0)=1, a(1)=10, a(2)=40. - Harvey P. Dale, Apr 17 2015
E.g.f.: 3*(4*x - 1)*exp(2*x) + 4*exp(x). - Ilya Gutkovskiy, Apr 17 2016
Extensions
More terms added by G. C. Greubel, Jun 07 2025