A276871
Sums-complement of the Beatty sequence for sqrt(5).
Original entry on oeis.org
1, 10, 19, 28, 37, 48, 57, 66, 75, 86, 95, 104, 113, 124, 133, 142, 151, 162, 171, 180, 189, 198, 209, 218, 227, 236, 247, 256, 265, 274, 285, 294, 303, 312, 323, 332, 341, 350, 359, 370, 379, 388, 397, 408, 417, 426, 435, 446, 455, 464, 473, 484, 493, 502
Offset: 1
The Beatty sequence for sqrt(5) is A022839 = (0,2,4,6,8,11,13,15,...), with difference sequence s = A081427 = (2,2,2,2,3,2,2,2,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,6,7,8,9,11,12,...), with complement (1,10,19,28,37,...).
-
z = 500; r = Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A022839 *)
t = Differences[b]; (* A081427 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276871 *)
Original entry on oeis.org
1, -1, 0, 2, -2, -5, 14, 5, -72, 68, 278, -726, -520, 4691, -3514, -21758, 50374, 56185, -374566, 194596, 1962618, -3956504, -6258320, 33057877, -8974630, -190822072, 330170022, 710487590, -3088268200, 18008739, 19398384974, -28292606291, -81631282280, 298546543220, 84094857302, -2028216574806, 2428288153424, 9450205225145
Offset: 0
1 - x + 2*x^3 - 2*x^4 - 5*x^5 + 14*x^6 + 5*x^7 - 72*x^8 + 68*x^9 + ...
-
CoefficientList[1/x*InverseSeries[Series[x*(1-x+x^2) /(1-x)^2, {x, 0, 20}], x],x] (* Vaclav Kotesovec, Jan 22 2014 *)
-
{a(n) = if( n<0, 0, polcoeff( serreverse( x * ((1 - x + x^2) / (1 - x)^2 + x * O(x^n))) / x, n))} /* Michael Somos, Apr 05 2012 */
-
{a(n) = local(B); if( n<0, 0, B = O(x); for( k=0, n, B = (1 - B) * (x + B * (B - x))); polcoeff( B / x, n))} /* Michael Somos, Apr 05 2012 */
A373398
Triangle read by rows: T(n, k) = number of k-element subobjects of an n-element set in the category of relations, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 9, 1, 1, 15, 55, 25, 1, 1, 31, 285, 395, 65, 1, 1, 63, 1351, 5045, 2555, 161, 1, 1, 127, 6069, 56931, 78685, 15211, 385, 1, 1, 255, 26335, 592725, 2091171, 1101021, 85099, 897, 1, 1, 511, 111645, 5834515, 50334765, 67590387, 14169405, 454315, 2049, 1
Offset: 0
There are 9 2-element subobjects of a 3-element set in Rel. As truth matrices:
[1 0] [1 0] [0 0] [1 0] [0 1] [0 1] [1 1] [1 0] [1 0]
[0 1] [0 0] [1 0] [0 1] [1 0] [0 1] [1 0] [1 1] [0 1]
[0 0] [0 1] [0 1] [0 1] [0 1] [1 0] [0 1] [0 1] [1 1]
To convert to relations, note that each entry corresponds to whether
[(1,1) (2,1)]
[(1,2) (2,2)]
[(1,3) (2,3)]
is in the relation.
Triangle starts:
1,
1, 1,
1, 3, 1,
1, 7, 9, 1,
1, 15, 55, 25, 1,
1, 31, 285, 395, 65, 1,
1, 63, 1351, 5045, 2555, 161, 1,
1, 127, 6069, 56931, 78685, 15211, 385, 1,
1, 255, 26335, 592725, 2091171, 1101021, 85099, 897, 1,
1, 511, 111645, 5834515, 50334765, 67590387, 14169405, 454315, 2049, 1,
...
Analogous sequence in the category Set:
A007318.
-
T[n_,k_]:=SeriesCoefficient[(1 / (1 - 2^k* x)) * Product[1 / (1 - (2^k - 2^i) * x),{i,0,k-1}],{x,0,n}]; Table[T[n-k,k],{n,0,9},{k,0,n}]//Flatten (* Stefano Spezia, Jun 04 2024 *)
-
dim = 10
def getGF(n):
R. = PowerSeriesRing(ZZ, 'x', dim)
f = 1 / (1 - 2^n * x)
for k in range(n):
f = f / (1 - (2^n - 2^k) * x)
return f
for n in range(dim):
print([getGF(k).list()[n - k] for k in range(n + 1)])
Showing 1-3 of 3 results.
Comments