A028235 If n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j (the denominator of this sum is A007947).
0, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 5, 1, 9, 8, 1, 1, 5, 1, 7, 10, 13, 1, 5, 1, 15, 1, 9, 1, 31, 1, 1, 14, 19, 12, 5, 1, 21, 16, 7, 1, 41, 1, 13, 8, 25, 1, 5, 1, 7, 20, 15, 1, 5, 16, 9, 22, 31, 1, 31, 1, 33, 10, 1, 18, 61, 1, 19, 26, 59, 1, 5, 1, 39, 8, 21, 18, 71, 1, 7, 1, 43, 1, 41, 22, 45, 32
Offset: 1
Examples
Fractions begin with 0, 1/2, 1/3, 1/2, 1/5, 5/6, 1/7, 1/2, 1/3, 7/10, 1/11, 5/6, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
a[1] = 0; a[n_] := 1/FactorInteger[n][[All, 1]] // Total // Numerator; Array[a, 100] (* Jean-François Alcover, May 08 2019 *)
-
PARI
A028235(n) = numerator(vecsum(apply(p->(1/p), factor(n)[, 1]))); \\ Antti Karttunen, Mar 04 2018
Formula
Fraction is additive with a(p^e) = 1/p.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A007947(k) = Sum_{p prime} 1/p^2 = 0.452247... (A085548). - Amiram Eldar, Sep 29 2023
Extensions
More terms from Erich Friedman.
Term a(1) changed to 0 by Antti Karttunen, Mar 04 2018
Comments