cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A332880 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j).

Original entry on oeis.org

1, 3, 4, 3, 6, 2, 8, 3, 4, 9, 12, 2, 14, 12, 8, 3, 18, 2, 20, 9, 32, 18, 24, 2, 6, 21, 4, 12, 30, 12, 32, 3, 16, 27, 48, 2, 38, 30, 56, 9, 42, 16, 44, 18, 8, 36, 48, 2, 8, 9, 24, 21, 54, 2, 72, 12, 80, 45, 60, 12, 62, 48, 32, 3, 84, 24, 68, 27, 32, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Numerator of sum of reciprocals of squarefree divisors of n.
(6/Pi^2) * A332881(n)/a(n) is the asymptotic density of numbers that are coprime to their digital sum in base n+1 (see A094387 and A339076 for bases 2 and 10). - Amiram Eldar, Nov 24 2022

Examples

			1, 3/2, 4/3, 3/2, 6/5, 2, 8/7, 3/2, 4/3, 9/5, 12/11, 2, 14/13, 12/7, 8/5, 3/2, 18/17, ...
		

Crossrefs

Programs

  • Maple
    a:= n-> numer(mul(1+1/i[1], i=ifactors(n)[2])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
    Table[Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}], {n, 1, 70}] // Numerator
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A332880(n) = numerator(A001615(n)/n);

Formula

Numerators of coefficients in expansion of Sum_{k>=1} mu(k)^2*x^k/(k*(1 - x^k)).
a(n) = numerator of Sum_{d|n} mu(d)^2/d.
a(n) = numerator of psi(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A001615(n) / A306695(n) = A001615(n) / gcd(n, A001615(n)). - Antti Karttunen, Nov 15 2021
From Amiram Eldar, Nov 24 2022: (Start)
Asymptotic means:
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332881(k) = 15/Pi^2 = 1.519817... (A082020).
Limit_{m->oo} (1/m) * Sum_{k=1..m} A332881(k)/a(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442... (A065463). (End)

A326689 Numerator of the fraction (Sum_{prime p | n} 1/p - 1/n).

Original entry on oeis.org

-1, 0, 0, 1, 0, 2, 0, 3, 2, 3, 0, 3, 0, 4, 7, 7, 0, 7, 0, 13, 3, 6, 0, 19, 4, 7, 8, 17, 0, 1, 0, 15, 13, 9, 11, 29, 0, 10, 5, 27, 0, 20, 0, 25, 23, 12, 0, 13, 6, 17, 19, 29, 0, 22, 3, 5, 7, 15, 0, 61, 0, 16, 29, 31, 17, 10, 0, 37, 25, 29, 0, 59, 0, 19, 13, 41
Offset: 1

Views

Author

Jonathan Sondow, Jul 18 2019

Keywords

Comments

See Comments on denominators in A326690.

Examples

			-1/1, 0/1, 0/1, 1/4, 0/1, 2/3, 0/1, 3/8, 2/9, 3/5, 0/1, 3/4, 0/1, 4/7, 7/15, 7/16, 0/1, 7/9, 0/1, 13/20, 3/7, 6/11, 0/1, 19/24, 4/25, 7/13, 8/27, 17/28, 0/1, 1/1
		

Crossrefs

Denominators are A326690. Cf. also A007850, A309132, A309235, A309378.
Cf. A028235.

Programs

  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    g[n_] := Numerator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Table[ g[n], {n, 100}]
  • PARI
    a(n) = numerator(sumdiv(n, d, isprime(d)/d) - 1/n); \\ Michel Marcus, Jul 19 2019

Formula

a(p) = 0 if p is a prime.
a(g) = 1 if g is a known Giuga number (see my 2nd comment in A007850).

A332882 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j^k_j).

Original entry on oeis.org

1, 3, 4, 5, 6, 2, 8, 9, 10, 9, 12, 5, 14, 12, 8, 17, 18, 5, 20, 3, 32, 18, 24, 3, 26, 21, 28, 10, 30, 12, 32, 33, 16, 27, 48, 25, 38, 30, 56, 27, 42, 16, 44, 15, 4, 36, 48, 17, 50, 39, 24, 35, 54, 14, 72, 9, 80, 45, 60, 2, 62, 48, 80, 65, 84, 24, 68, 45, 32, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Numerator of sum of reciprocals of unitary divisors of n.

Examples

			1, 3/2, 4/3, 5/4, 6/5, 2, 8/7, 9/8, 10/9, 9/5, 12/11, 5/3, 14/13, 12/7, 8/5, 17/16, ...
		

Crossrefs

Programs

  • Maple
    a:= n-> numer(mul(1+i[1]^i[2], i=ifactors(n)[2])/n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]]^#[[2]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
    Table[Sum[If[GCD[d, n/d] == 1,  1/d, 0], {d, Divisors[n]}], {n, 1, 70}] // Numerator
  • PARI
    a(n) = numerator(sumdiv(n, d, if (gcd(d, n/d)==1, 1/d))); \\ Michel Marcus, Feb 28 2020

Formula

a(n) = numerator of Sum_{d|n, gcd(d, n/d) = 1} 1/d.
a(n) = numerator of usigma(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A034448(n) / A323166(n). - Antti Karttunen, Nov 13 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332883(k) = zeta(2)/zeta(3) = 1.368432... (A306633). - Amiram Eldar, Nov 21 2022

A373439 Numerator of sum of reciprocals of square divisors of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 21, 1, 10, 1, 5, 1, 1, 1, 5, 26, 1, 10, 5, 1, 1, 1, 21, 1, 1, 1, 25, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 21, 50, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 85, 1, 1, 1, 5, 1, 1, 1, 25, 1, 1, 26, 5, 1, 1, 1, 21, 91, 1, 1, 5, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 05 2024

Keywords

Examples

			1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Numerator
    f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 26 2024 *)
  • PARI
    a(n) = numerator(sumdiv(n, d, if (issquare(d), 1/d))); \\ Michel Marcus, Jun 05 2024

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1 - x^(k^2))).
a(n) is the numerator of Sum_{d^2|n} 1/d^2.
From Amiram Eldar, Jun 26 2024: (Start)
Let f(n) = a(n)/A373440(n). Then:
f(n) is multiplicative with f(p^e) = (p^2 - p^(-2*floor(e/2)))/(p^2-1).
Dirichlet g.f. of f(n): zeta(s) * zeta(2*s+2).
Sum_{k=1..n} f(k) ~ zeta(4) * n. (End)

A354432 a(n) is the numerator of the sum of the reciprocals of the nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 7, 1, 11, 10, 11, 1, 3, 1, 15, 16, 23, 1, 4, 1, 7, 22, 23, 1, 5, 26, 27, 31, 19, 1, 41, 1, 47, 34, 35, 36, 61, 1, 39, 40, 31, 1, 55, 1, 29, 6, 47, 1, 7, 50, 29, 52, 17, 1, 25, 56, 3, 58, 59, 1, 53, 1, 63, 74, 95, 66, 83, 1, 22, 70, 17, 1, 15, 1, 75, 28
Offset: 1

Views

Author

Ilya Gutkovskiy, May 28 2022

Keywords

Examples

			1, 1, 1, 5/4, 1, 7/6, 1, 11/8, 10/9, 11/10, 1, 3/2, 1, 15/14, 16/15, 23/16, ...
		

Crossrefs

Cf. A017665, A018252, A023890, A028235, A354433 (denominators).

Programs

  • Mathematica
    Table[DivisorSum[n, 1/# &, !PrimeQ[#] &], {n, 75}] // Numerator
  • PARI
    a(n) = numerator(sumdiv(n, d, if(!isprime(d), 1/d))) \\ Michael S. Branicky, May 28 2022
    
  • Python
    from fractions import Fraction
    from sympy import divisors, isprime
    def a(n): return sum(Fraction(1, d) for d in divisors(n, generator=True) if not isprime(d)).numerator
    print([a(n) for n in range(1, 76)]) # Michael S. Branicky, May 28 2022
    
  • Python
    from math import prod
    from fractions import Fraction
    from sympy import factorint
    def A354432(n):
        f = factorint(n)
        return (Fraction(prod(p**(e+1)-1 for p, e in f.items()),prod(p-1 for p in f)*n) - sum(Fraction(1,p) for p in f)).numerator # Chai Wah Wu, May 28 2022

Formula

a(p) = 1 for prime p. - Michael S. Branicky, May 28 2022

A379141 If n = Product (p_j^k_j) then a(n) = numerator of Sum 1/k_j.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 5, 1, 2, 3, 1, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 5, 1, 2, 1, 5, 2, 2, 2, 4, 1, 5, 2, 3, 2, 2, 2, 6, 1, 3, 3, 1, 1, 3, 1, 4, 3, 2, 1, 5, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> numer(add(1/i[2], i=ifactors(n)[2])):
    seq(a(n), n=1..110);  # Alois P. Heinz, Dec 16 2024
  • Mathematica
    Join[{0}, Table[Plus @@ (1/#[[2]] & /@ FactorInteger[n]), {n, 2, 110}]] // Numerator
  • PARI
    a(n) = my(f=factor(n)); numerator(sum(k=1, #f~, 1/f[k,2])); \\ Michel Marcus, Dec 16 2024

A379967 Arithmetic derivative of {n divided by its largest squarefree divisor}: a(n) = A003415(A003557(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 4, 1, 0, 0, 1, 0, 0, 0, 12, 0, 1, 0, 1, 0, 0, 0, 4, 1, 0, 6, 1, 0, 0, 0, 32, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 1, 1, 0, 0, 12, 1, 1, 0, 1, 0, 6, 0, 4, 0, 0, 0, 1, 0, 0, 1, 80, 0, 0, 0, 1, 0, 0, 0, 16, 0, 0, 1, 1, 0, 0, 0, 12, 27, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 32, 0, 1, 1, 7, 0, 0, 0, 4
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2025

Keywords

Crossrefs

Programs

Formula

a(n) = A003415(A003557(n)).

A380314 Numerator of sum of reciprocals of all prime divisors of all positive integers <= n.

Original entry on oeis.org

0, 1, 5, 4, 23, 71, 527, 316, 117, 283, 3183, 5737, 75736, 170777, 186793, 100904, 1730383, 1295397, 24782713, 13522987, 42878411, 91488457, 2113934201, 1149922463, 234446350, 494634185, 169835681, 89698402, 2608690087, 84946052281, 2639797313941, 1370038779503, 1412581913773
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Comments

Prime divisors counted without multiplicity.

Examples

			0, 1/2, 5/6, 4/3, 23/15, 71/30, 527/210, 316/105, 117/35, 283/70, 3183/770, 5737/1155, 75736/15015, ...
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1) .. a(N)
    P:= select(isprime,[$1..N]):
    f:= proc(n) local k;
      numer(add(floor(n/P[k])/P[k],k=1..numtheory:-pi(n)))
    end proc:
    map(f, [$1..N]); # Robert Israel, Jan 26 2025
  • Mathematica
    Table[DivisorSum[n, 1/# &, PrimeQ[#] &], {n, 1, 33}] // Accumulate // Numerator
    Table[Sum[Floor[n/Prime[k]]/Prime[k], {k, 1, n}], {n, 1, 33}] // Numerator
    nmax = 33; CoefficientList[Series[1/(1 - x) Sum[x^Prime[k]/(Prime[k] (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
  • PARI
    a(n) = my(vp=primes(primepi(n))); numerator(sum(k=1, #vp, (n\vp[k])/vp[k])); \\ Michel Marcus, Jan 26 2025

Formula

G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^prime(k) / (prime(k)*(1 - x^prime(k))).
a(n) is the numerator of Sum_{k=1..pi(n)} floor(n/prime(k)) / prime(k).

A367202 If n = Product(p_i^e_i), a(n) = Sum_{i = 1..k}(rad(n)/p_i)^e_i, where rad is A007947.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 11, 1, 9, 8, 1, 1, 7, 1, 27, 10, 13, 1, 29, 1, 15, 1, 51, 1, 31, 1, 1, 14, 19, 12, 13, 1, 21, 16, 127, 1, 41, 1, 123, 28, 25, 1, 83, 1, 9, 20, 171, 1, 11, 16, 345, 22, 31, 1, 241, 1, 33, 52, 1, 18, 61, 1, 291, 26, 59, 1, 31, 1
Offset: 1

Views

Author

David James Sycamore, Nov 10 2023

Keywords

Comments

Diverges from A028235 at a(12).

Examples

			a(1) = 0, the empty sum.
rad(6) = rad(2*3) = 6 -->a(6) = (6/2)^1 + (6/3)^1 = 3 + 2 = 5.
rad(12) = rad(2^2*3) = 6 -->a(12) = (6/2)^2 + (6/3)^1 = 9 + 2 = 11.
rad(36) = rad(2^2*3^2) = 6 --> a(36) = (6/2)^2 +(6/3)^2 = 9 + 4 = 13.
rad(40) = rad(2^3*5^1) = 10 -->a(40) = (10/2)^3 + (10/5)^1 = 125 + 2 = 127.
n = 30 = 2*3*5 a squarefree number; a(30) = (30/2) + (30/3) + (30/5) = 15 + 10 +  6 = 31
		

Crossrefs

Programs

  • Mathematica
    Array[Function[{r, w}, Total[Power @@@ Transpose@ {r/w[[All, 1]], w[[All, -1]]}]] @@ {Times @@ #[[All, 1]], #} &@ FactorInteger[#] &, 120] (* Michael De Vlieger, Nov 10 2023 *)
  • PARI
    rad(f) = factorback(f[, 1]);
    a(n) = my(f=factor(n)); sum(i=1, #f~,(rad(f)/f[i,1])^f[i,2]); \\ Michel Marcus, Nov 10 2023

Formula

For n a prime power p^k, a(n) = (p/p)^1 = 1.
For n a squarefree semiprime a(n) = A001414(n).
For p,q distinct primes a(p*q^2) = q + p^2.
For n a squarefree number with prime divisors p_1,p_2..p_k, a(n) = Sum_{i = 1..k}(n/p_i) see Example

Extensions

More terms from Michael De Vlieger, Nov 10 2023

A380315 Denominator of sum of reciprocals of all prime divisors of all positive integers <= n.

Original entry on oeis.org

1, 2, 6, 3, 15, 30, 210, 105, 35, 70, 770, 1155, 15015, 30030, 30030, 15015, 255255, 170170, 3233230, 1616615, 4849845, 9699690, 223092870, 111546435, 22309287, 44618574, 14872858, 7436429, 215656441, 6469693230, 200560490130, 100280245065, 100280245065
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Comments

Prime divisors counted without multiplicity.
Differs from A379370 first at n=15.

Examples

			0, 1/2, 5/6, 4/3, 23/15, 71/30, 527/210, 316/105, 117/35, 283/70, 3183/770, 5737/1155, 75736/15015, ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1/# &, PrimeQ[#] &], {n, 1, 33}] // Accumulate // Denominator
    Table[Sum[Floor[n/Prime[k]]/Prime[k], {k, 1, n}], {n, 1, 33}] // Denominator
    nmax = 33; CoefficientList[Series[1/(1 - x) Sum[x^Prime[k]/(Prime[k] (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
  • PARI
    a(n) = my(vp=primes(primepi(n))); denominator(sum(k=1, #vp, (n\vp[k])/vp[k])); \\ Michel Marcus, Jan 26 2025

Formula

G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^prime(k) / (prime(k)*(1 - x^prime(k))).
a(n) is the denominator of Sum_{k=1..pi(n)} floor(n/prime(k)) / prime(k).
Showing 1-10 of 11 results. Next