cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A380315 Denominator of sum of reciprocals of all prime divisors of all positive integers <= n.

Original entry on oeis.org

1, 2, 6, 3, 15, 30, 210, 105, 35, 70, 770, 1155, 15015, 30030, 30030, 15015, 255255, 170170, 3233230, 1616615, 4849845, 9699690, 223092870, 111546435, 22309287, 44618574, 14872858, 7436429, 215656441, 6469693230, 200560490130, 100280245065, 100280245065
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Comments

Prime divisors counted without multiplicity.
Differs from A379370 first at n=15.

Examples

			0, 1/2, 5/6, 4/3, 23/15, 71/30, 527/210, 316/105, 117/35, 283/70, 3183/770, 5737/1155, 75736/15015, ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1/# &, PrimeQ[#] &], {n, 1, 33}] // Accumulate // Denominator
    Table[Sum[Floor[n/Prime[k]]/Prime[k], {k, 1, n}], {n, 1, 33}] // Denominator
    nmax = 33; CoefficientList[Series[1/(1 - x) Sum[x^Prime[k]/(Prime[k] (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
  • PARI
    a(n) = my(vp=primes(primepi(n))); denominator(sum(k=1, #vp, (n\vp[k])/vp[k])); \\ Michel Marcus, Jan 26 2025

Formula

G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^prime(k) / (prime(k)*(1 - x^prime(k))).
a(n) is the denominator of Sum_{k=1..pi(n)} floor(n/prime(k)) / prime(k).
Showing 1-1 of 1 results.