cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A380314 Numerator of sum of reciprocals of all prime divisors of all positive integers <= n.

Original entry on oeis.org

0, 1, 5, 4, 23, 71, 527, 316, 117, 283, 3183, 5737, 75736, 170777, 186793, 100904, 1730383, 1295397, 24782713, 13522987, 42878411, 91488457, 2113934201, 1149922463, 234446350, 494634185, 169835681, 89698402, 2608690087, 84946052281, 2639797313941, 1370038779503, 1412581913773
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Comments

Prime divisors counted without multiplicity.

Examples

			0, 1/2, 5/6, 4/3, 23/15, 71/30, 527/210, 316/105, 117/35, 283/70, 3183/770, 5737/1155, 75736/15015, ...
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1) .. a(N)
    P:= select(isprime,[$1..N]):
    f:= proc(n) local k;
      numer(add(floor(n/P[k])/P[k],k=1..numtheory:-pi(n)))
    end proc:
    map(f, [$1..N]); # Robert Israel, Jan 26 2025
  • Mathematica
    Table[DivisorSum[n, 1/# &, PrimeQ[#] &], {n, 1, 33}] // Accumulate // Numerator
    Table[Sum[Floor[n/Prime[k]]/Prime[k], {k, 1, n}], {n, 1, 33}] // Numerator
    nmax = 33; CoefficientList[Series[1/(1 - x) Sum[x^Prime[k]/(Prime[k] (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
  • PARI
    a(n) = my(vp=primes(primepi(n))); numerator(sum(k=1, #vp, (n\vp[k])/vp[k])); \\ Michel Marcus, Jan 26 2025

Formula

G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^prime(k) / (prime(k)*(1 - x^prime(k))).
a(n) is the numerator of Sum_{k=1..pi(n)} floor(n/prime(k)) / prime(k).
Showing 1-1 of 1 results.