A028244 a(n) = 4^(n-1) - 3*3^(n-1) + 3*2^(n-1) - 1 (essentially Stirling numbers of second kind).
0, 0, 0, 6, 60, 390, 2100, 10206, 46620, 204630, 874500, 3669006, 15195180, 62350470, 254135700, 1030793406, 4166023740, 16792841910, 67558001700, 271392695406, 1089054420300, 4366671742950, 17498055448500, 70086339807006
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1661
- K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, Electronics Letters ( Volume: 50, Issue: 1, January 2 2014 ).
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (10, -35, 50, -24).
Programs
-
Magma
[4^(n-1) - 3*3^(n-1) + 3*2^(n-1) - 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017
-
Mathematica
Table[4^(n - 1) - 3*3^(n - 1) + 3*2^(n - 1) - 1, {n, 1, 30}] (* Stefan Steinerberger, Apr 13 2006 *) Table[6*StirlingS2[n,4], {n,1,30}] (* G. C. Greubel, Nov 19 2017 *)
-
PARI
for(n=1,30, print1(6*stirling(n,4,2), ", ")) \\ G. C. Greubel, Nov 19 2017
Formula
a(n) = 6*S(n, 4) = 6*A000453(n). - Emeric Deutsch, May 02 2004
G.f.: 6x^4/((1-x)(1-2x)(1-3x)(1-4x)). - R. J. Mathar, Oct 23 2008
E.g.f.: (exp(4*x) - 4*exp(3*x) + 6*exp(2*x) - 4*exp(x) + 1)/4, with a(0) = 0. - Wolfdieter Lang, May 03 2017
a(n) = 2*A032263(n). - Alois P. Heinz, Jan 24 2018
Comments