cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028254 Engel expansion of sqrt(2).

Original entry on oeis.org

1, 3, 5, 5, 16, 18, 78, 102, 120, 144, 251, 363, 1402, 31169, 88630, 184655, 259252, 298770, 4196070, 38538874, 616984563, 1975413035, 5345718057, 27843871197, 54516286513, 334398528974, 445879679626, 495957494386, 2450869042061, 2629541150529, 4088114099885
Offset: 1

Views

Author

Naoki Sato (naoki(AT)math.toronto.edu)

Keywords

Comments

For a number x (here sqrt(2)), define a(1) <= a(2) <= a(3) <= ... so that x = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... by x(1) = x, a(n) = ceiling(1/x(n)), x(n+1) = x(n)a(n) - 1.

Examples

			sqrt(2) = 1.4142135623730950488...
1 + 1/3 = 4/3 = 1.3333333333333333333...; sqrt(2) - 4/3 = 0.080880229...
1 + 1/3 + 1/15 = 7/5 = 1.4; sqrt(2) - 7/5 = 0.014213562373...
1 + 1/3 + 1/15 + 1/75 = 106/75 = 1.4133333333333333...; sqrt(2) - 106/75 = 0.000880229...
		

Crossrefs

Cf. A002193 (decimal expansion), A006784 (for definition of Engel expansion), A028257 (Engel expansion of sqrt(3)).

Programs

  • Mathematica
    expandEngel[A_, n_] := Join[Array[1 &, Floor[A]], First @ Transpose @ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; expandEngel[N[2^(1/2), 7!], 47] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)

Extensions

More terms from Simon Plouffe, Jan 05 2002