A028254 Engel expansion of sqrt(2).
1, 3, 5, 5, 16, 18, 78, 102, 120, 144, 251, 363, 1402, 31169, 88630, 184655, 259252, 298770, 4196070, 38538874, 616984563, 1975413035, 5345718057, 27843871197, 54516286513, 334398528974, 445879679626, 495957494386, 2450869042061, 2629541150529, 4088114099885
Offset: 1
Keywords
Examples
sqrt(2) = 1.4142135623730950488... 1 + 1/3 = 4/3 = 1.3333333333333333333...; sqrt(2) - 4/3 = 0.080880229... 1 + 1/3 + 1/15 = 7/5 = 1.4; sqrt(2) - 7/5 = 0.014213562373... 1 + 1/3 + 1/15 + 1/75 = 106/75 = 1.4133333333333333...; sqrt(2) - 106/75 = 0.000880229...
Links
- T. D. Noe, Table of n, a(n) for n = 1..300
- Benoît Rittaud, La porte d’harmonie, Images des Mathématiques, CNRS, 2009 (in French).
- Naoki Sato, Home page (broken link)
- Eric Weisstein's World of Mathematics, Engel Expansion
- Eric Weisstein's World of Mathematics, Pythagoras's Constant
Crossrefs
Programs
-
Mathematica
expandEngel[A_, n_] := Join[Array[1 &, Floor[A]], First @ Transpose @ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; expandEngel[N[2^(1/2), 7!], 47] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)
Extensions
More terms from Simon Plouffe, Jan 05 2002
Comments