cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054543 Engel series expansion (or "Egyptian product") for Catalan's constant G.

Original entry on oeis.org

2, 2, 2, 4, 4, 5, 5, 12, 13, 41, 110, 172, 248, 309, 3146, 5919, 21959, 22299, 30892, 401838, 1719239, 30576561, 262313756, 630913752, 3242181301, 3250783944, 13827502849, 40152067840, 137791590233, 2514510232695, 3217773878849
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 09 2000

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 53-59.

Crossrefs

Programs

  • Mathematica
    EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])],A-Floor[A]},n-1]]; EngelExp[N[Catalan,7! ],50] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)

A220397 A modified Engel expansion of sqrt(2).

Original entry on oeis.org

1, 3, 6, 4, 2, 2, 4, 6, 23, 66, 108, 7738, 290, 9, 24, 32, 30, 4, 6, 3, 6, 24, 22, 2, 6, 20, 6, 9, 16, 5, 12, 4, 12, 22, 5, 8, 3, 6, 4, 2, 2, 4, 6, 2, 2, 2, 2, 13, 24, 2, 3, 4, 2, 2, 2, 2, 23, 44, 21, 40, 8, 14, 3, 6, 12, 10, 11, 30, 4, 4, 9, 4, 3, 4, 2, 16, 45, 46, 528
Offset: 1

Views

Author

Peter Bala, Dec 13 2012

Keywords

Comments

See A220393 for a definition of the modified Engel expansion of a positive real number. For further details see the Bala link.

Crossrefs

Formula

Let h(x) = x*(floor(1/x) + (floor(1/x))^2) - floor(1/x). Let x = sqrt(2) - 1. Then a(1) = 1, a(2) = ceiling(1/x) and, for n >= 1, a(n+2) = floor(1/h^(n-1)(x))*(1 + floor(1/h^(n)(x))).
Put P(n) = Product_{k = 1..n} a(k). Then we have the Egyptian fraction series expansion sqrt(2) = Sum_{n>=1} 1/P(n) = 1 + 1/3 + 1/(3*6) + 1/(3*6*4) + 1/(3*6*4*2) + 1/(3*6*4*2*2) + .... For n >= 2, the error made in truncating this series to n terms is less than the n-th term.

A053977 Engel expansion of the Euler-Mascheroni constant gamma A001620 = 0.57721566... .

Original entry on oeis.org

2, 7, 13, 19, 85, 2601, 9602, 46268, 4812284, 147961485, 210810243, 814960948, 1003849128, 1016803038, 12917183059, 26242325020, 22215291139324, 30797877759859, 60139200644343, 121848657453426, 133555928335475
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 02 2000

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

Extensions

More terms and additional comments from Mitch Harris, Jan 15 2001

A053980 Engel expansion of zeta(3) = 1.20206... .

Original entry on oeis.org

1, 5, 98, 127, 923, 5474, 16490, 25355, 37910, 85150, 1033216, 2290644, 7844861, 11170684, 18884358, 21481832, 35060787, 52399788, 201059261, 261533994, 9939708446, 211698940106, 3030068839686, 4326424644987, 6082687570463
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 02 2000

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[[ 1 ] ]#[[ 2 ] ]-1 ] ], Expand[ #[[ 1 ] ]#[[ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

Extensions

More terms and additional comments from Mitch Harris, Jan 15 2001

A091831 Pierce expansion of 1/sqrt(2).

Original entry on oeis.org

1, 3, 8, 33, 35, 39201, 39203, 60245508192801, 60245508192803, 218662352649181293830957829984632156775201, 218662352649181293830957829984632156775203
Offset: 0

Views

Author

Benoit Cloitre, Mar 09 2004

Keywords

Comments

If u(0)=exp(1/m) m integer>1 and u(n+1)=u(n)/frac(u(n)) then floor(u(n))=m*n.

Crossrefs

Cf. A006784 (Pierce expansion definition), A028254

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/2), 7!], 17] (* G. C. Greubel, Nov 13 2016 *)
  • PARI
    r=sqrt(2);for(n=1,10,r=r/(r-floor(r));print1(floor(r),","))

Formula

Let u(0)=sqrt(2) and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)).
1/sqrt(2)= 1/a(1) - 1/a(1)/a(2) + 1/a(1)/a(2)/a(3) - 1/a(1)/a(2)/a(3)/a(4)...
limit n -> infinity a(n)^(1/n) = e.

A054544 Engel series expansion (or "Egyptian product") for Khintchine's constant.

Original entry on oeis.org

1, 1, 2, 3, 9, 70, 117, 503, 648, 1078, 12868, 41235, 178650, 377670, 394301, 546185, 2600672, 8729780, 41318679, 83367169, 525961060, 561571346, 1556964264, 1868773845, 15139200289, 27297789005, 30324107039, 56699922000
Offset: 0

Views

Author

Jeppe Stig Nielsen, Apr 09 2000

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 59-65.

Crossrefs

Showing 1-6 of 6 results.