cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067912 Engel expansion of zeta(4) = Pi^4/90 = Sum_{i>0} 1/i^4.

Original entry on oeis.org

1, 13, 15, 19, 132, 1474, 1977, 10392, 12992, 44777, 59412, 170685, 217607, 704791, 818133, 1387423, 2208674, 3206215, 12732462, 13962681, 24593168, 39744274, 55804517, 130269696, 426536424, 546807194, 1030799587, 1139987135
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]]; EngelExp[N[Pi^4/90, 7!], 20] (* G. C. Greubel, Dec 26 2016 *)

A059186 Engel expansion of Pi^2/6, or zeta(2) = 1.64493.

Original entry on oeis.org

1, 2, 4, 7, 9, 22, 35, 79, 2992, 3597, 17523, 28632, 41470, 53093, 57406, 14504930, 42622213, 188335162, 322429556, 1023003875, 1328535963, 3138645732, 11618168524, 137721814936, 156929353744, 166732460513, 813398686532
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Pi^2/6, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)
Showing 1-2 of 2 results.