cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028309 Molien series for ring of symmetrized weight enumerators of self-dual codes (with respect to Euclidean inner product) of length n over GF(4).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 33, 38, 45, 51, 59, 66, 75, 83, 93, 102, 113, 123, 135, 146, 159, 171, 185, 198, 213, 227, 243, 258, 275, 291, 309, 326, 345, 363, 383, 402, 423, 443, 465, 486, 509, 531, 555, 578, 603, 627, 653, 678, 705, 731, 759, 786
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    [n le 2 select Floor((n+2)/2) else (2*n^2-4*n+21+3*(-1)^n)/8: n in [0..50]]; // G. C. Greubel, Jan 05 2024
    
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{1,1,2,3,5,6,9},50] (* Harvey P. Dale, Nov 06 2016 *)
  • SageMath
    [(2*n^2-4*n+21+3*(-1)^n)/8 - ((4-n)//2)*int(n<3) for n in range(51)] # G. C. Greubel, Jan 05 2024

Formula

G.f.: (1 - x + x^3 - x^5 + x^6)/((1-x)^2 * (1-x^2)). - Ralf Stephan, Apr 29 2014
a(n) = (1/8) * (2*n^2 + 3*(-1)^n - 4*n + 21) for n >= 3. - Ralf Stephan, Apr 29 2014 [Corrected by Pontus von Brömssen, May 30 2023]
From G. C. Greubel, Jan 05 2024: (Start)
a(n) = (1/8)*(2*n^2 - 4*n + 21 + 3*(-1)^n) - 2*[n=0] - [n=1] - [n=2].
E.g.f.: (1/8)*( (21 - 2*x + 2*x^2)*exp(x) + 3*exp(-x) ) - (2 + x + x^2/2). (End)