A028315 Odd elements in the 5-Pascal triangle A028313.
1, 1, 1, 1, 5, 1, 1, 1, 1, 7, 7, 1, 1, 19, 19, 1, 1, 9, 27, 27, 9, 1, 1, 65, 65, 1, 1, 11, 101, 101, 11, 1, 1, 57, 147, 231, 231, 147, 57, 1, 1, 13, 69, 69, 13, 1, 1, 273, 273, 1, 1, 15, 355, 855, 855, 355, 15, 1, 1, 111, 451, 2277, 2277, 451, 111, 1, 1, 17, 127, 1661, 3487, 5379, 5379, 3487, 1661, 127, 17, 1
Offset: 0
Examples
Odd elements of A028313 as an irregular triangle: 1; 1, 1; 1, 5, 1; 1, 1; 1, 7, 7, 1; 1, 19, 19, 1; 1, 9, 27, 27, 9, 1; 1, 65, 65, 1; 1, 11, 101, 101, 11, 1; 1, 57, 147, 231, 231, 147, 57, 1; 1, 13, 69, 69, 13, 1; 1, 273, 273, 1; 1, 15, 355, 855, 855, 355, 15, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
A028313:= func< n, k | n le 1 select 1 else Binomial(n, k) +3*Binomial(n-2, k-1) >; a:=[A028313(n, k): k in [0..n], n in [0..100]]; [a[n]: n in [1..150] | (a[n] mod 2) eq 1]; // G. C. Greubel, Jan 06 2024
-
Mathematica
A028313[n_, k_]:= If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]]; f= Table[A028313[n, k], {n,0,100}, {k,0,n}]//Flatten; a[n_]:= DeleteCases[{f[[n+1]]}, _?EvenQ]; Table[a[n], {n,0,150}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
-
SageMath
def A028313(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1) a=flatten([[A028313(n, k) for k in range(n+1)] for n in range(101)]) [a[n] for n in (0..150) if a[n]%2==1] # G. C. Greubel, Jan 06 2024
Extensions
More terms from James Sellers