cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028316 Odd elements in the 5-Pascal triangle A028313 that are not 1.

Original entry on oeis.org

5, 7, 7, 19, 19, 9, 27, 27, 9, 65, 65, 11, 101, 101, 11, 57, 147, 231, 231, 147, 57, 13, 69, 69, 13, 273, 273, 15, 355, 855, 855, 355, 15, 111, 451, 2277, 2277, 451, 111, 17, 127, 1661, 3487, 5379, 5379, 3487, 1661, 127, 17, 689, 2223, 11583, 11583, 2223, 689, 19
Offset: 0

Views

Author

Keywords

Comments

Odd elements of A028314. - G. C. Greubel, Jan 06 2024

Examples

			Odd elements of A028313 as an irregular triangle:
   5;
   7,   7;
  19,  19;
   9,  27,  27,   9;
  65,  65;
  11, 101, 101,  11;
  57, 147, 231, 231, 147, 57;
  ...
		

Crossrefs

Programs

  • Magma
    A028314:= func< n, k | Binomial(n+2, k+1) + 3*Binomial(n, k) >;
    a:=[A028314(n, k): k in [0..n], n in [0..100]];
    [a[n]: n in [1..150] | (a[n] mod 2) eq 1]; // G. C. Greubel, Jan 06 2024
    
  • Mathematica
    A028314[n_, k_]:= Binomial[n+2,k+1] +3*Binomial[n,k];
    f= Table[A028314[n,k], {n,0,100}, {k,0,n}]//Flatten;
    a[n_]:= DeleteCases[{f[[n+1]]}, _?EvenQ];
    Table[a[n], {n,0,150}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
  • SageMath
    def A028314(n, k): return binomial(n+2, k+1) + 3*binomial(n, k)
    a=flatten([[A028314(n, k) for k in range(n+1)] for n in range(101)])
    [a[n] for n in (0..150) if a[n]%2==1] # G. C. Greubel, Jan 06 2024

Extensions

More terms from James Sellers