A028317 Even elements in the 5-Pascal triangle A028313.
6, 6, 12, 8, 8, 38, 10, 36, 36, 10, 46, 130, 46, 12, 12, 204, 378, 462, 378, 204, 14, 82, 582, 840, 840, 582, 82, 14, 96, 1422, 1680, 1422, 96, 16, 1210, 3102, 3102, 1210, 16, 562, 6204, 562, 18, 144, 5148, 8866, 8866, 5148, 144, 18, 162, 2912, 14014, 23166
Offset: 0
Examples
Even elements of A028313 as an irregular triangle: 6, 6; 12; 8, 8; 38; 10, 36, 36, 10; 46, 130, 46; 12, 12; ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
A028313:= func< n, k | n le 1 select 1 else Binomial(n, k) +3*Binomial(n-2, k-1) >; a:=[A028313(n, k): k in [0..n], n in [0..100]]; [a[n]: n in [1..200] | (a[n] mod 2) eq 0]; // G. C. Greubel, Jan 06 2024
-
Mathematica
A028313[n_, k_]:= If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]]; f= Table[A028313[n,k], {n,0,100}, {k,0,n}]//Flatten; b[n_]:= DeleteCases[{f[[n+1]]}, _?OddQ]; Table[b[n], {n,0,200}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
-
SageMath
def A028313(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1) a=flatten([[A028313(n, k) for k in range(n+1)] for n in range(101)]) [a[n] for n in (0..200) if a[n]%2==0] # G. C. Greubel, Jan 06 2024
Formula
a(n) = 2*A051472(n). - G. C. Greubel, Jan 06 2024
Extensions
More terms from James Sellers