cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028317 Even elements in the 5-Pascal triangle A028313.

Original entry on oeis.org

6, 6, 12, 8, 8, 38, 10, 36, 36, 10, 46, 130, 46, 12, 12, 204, 378, 462, 378, 204, 14, 82, 582, 840, 840, 582, 82, 14, 96, 1422, 1680, 1422, 96, 16, 1210, 3102, 3102, 1210, 16, 562, 6204, 562, 18, 144, 5148, 8866, 8866, 5148, 144, 18, 162, 2912, 14014, 23166
Offset: 0

Views

Author

Keywords

Examples

			Even elements of A028313 as an irregular triangle:
   6,   6;
  12;
   8,   8;
  38;
  10,  36, 36, 10;
  46, 130, 46;
  12,  12;
  ...
		

Crossrefs

Programs

  • Magma
    A028313:= func< n, k | n le 1 select 1 else Binomial(n, k) +3*Binomial(n-2, k-1) >;
    a:=[A028313(n, k): k in [0..n], n in [0..100]];
    [a[n]: n in [1..200] | (a[n] mod 2) eq 0]; // G. C. Greubel, Jan 06 2024
    
  • Mathematica
    A028313[n_, k_]:= If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]];
    f= Table[A028313[n,k], {n,0,100}, {k,0,n}]//Flatten;
    b[n_]:= DeleteCases[{f[[n+1]]}, _?OddQ];
    Table[b[n], {n,0,200}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
  • SageMath
    def A028313(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1)
    a=flatten([[A028313(n, k) for k in range(n+1)] for n in range(101)])
    [a[n] for n in (0..200) if a[n]%2==0] # G. C. Greubel, Jan 06 2024

Formula

a(n) = 2*A051472(n). - G. C. Greubel, Jan 06 2024

Extensions

More terms from James Sellers