A028318 Distinct elements in the 5-Pascal triangle A028313.
1, 5, 6, 7, 12, 8, 19, 9, 27, 38, 10, 36, 65, 11, 46, 101, 130, 57, 147, 231, 13, 69, 204, 378, 462, 14, 82, 273, 582, 840, 15, 96, 355, 855, 1422, 1680, 16, 111, 451, 1210, 2277, 3102, 17, 127, 562, 1661, 3487, 5379, 6204, 18, 144, 689, 2223, 5148, 8866
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
DeleteDuplicates[Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,30}, {k,0,n}]//Flatten] (* G. C. Greubel, Jul 03 2024 *)
-
SageMath
def A028323(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1) b=flatten([[A028323(n, k) for k in range(n+1)] for n in range(31)]) def a(seq): # order preserving nd = [] # no duplicates [nd.append(i) for i in seq if not nd.count(i)] return nd a(b) # A028318 # G. C. Greubel, Jul 03 2024
Extensions
More terms from James Sellers, Dec 08 1999