A028319 Distinct odd elements in the 5-Pascal triangle A028313.
1, 5, 7, 19, 9, 27, 65, 11, 101, 57, 147, 231, 13, 69, 273, 15, 355, 855, 111, 451, 2277, 17, 127, 1661, 3487, 5379, 689, 2223, 11583, 833, 7371, 20449, 181, 995, 3745, 10283, 21385, 34463, 43615, 21, 201, 1377, 23, 1599, 7293, 267, 1843, 31977, 25
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
DeleteDuplicates[Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,30}, {k,0,n}]//Flatten]//Select[OddQ] (* G. C. Greubel, Jul 13 2024 *)
-
SageMath
def A028323(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1) b=flatten([[A028323(n, k) for k in range(n+1)] for n in range(31)]) def a(seq): # order preserving nd = [] # no duplicates [nd.append(i) for i in seq if not nd.count(i) and i%2==1] return nd a(b) # A028319 # G. C. Greubel, Jul 13 2024
Extensions
More terms from James Sellers, Dec 08 1999