A028325 Odd elements to the right of the central elements of the 5-Pascal triangle A028313.
1, 1, 1, 7, 1, 19, 1, 27, 9, 1, 65, 1, 101, 11, 1, 231, 147, 57, 1, 69, 13, 1, 273, 1, 855, 355, 15, 1, 2277, 451, 111, 1, 5379, 3487, 1661, 127, 17, 1, 11583, 2223, 689, 1, 20449, 7371, 833, 19, 1, 43615, 34463, 21385, 10283, 3745, 995, 181, 1, 201, 21, 1
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
T:= func< n,k | Binomial(n+1, k+1+Floor((n+1)/2)) + 3*Binomial(n-1, k+Floor((n+1)/2)) >; // T = A028323, essentially b:=[T(n, k): k in [0..Floor(n/2)], n in [0..100]]; [b[n]: n in [1..150] | (b[n] mod 2) eq 1]; // G. C. Greubel, Jan 06 2024
-
Mathematica
A028313[n_, k_]:= If[n<2, 1, Binomial[n,k] + 3*Binomial[n-2, k-1]]; f= Table[A028313[n, k], {n,0,100}, {k,1+Floor[n/2],n}]//Flatten; b[n_]:= DeleteCases[{f[[n+1]]}, _?EvenQ]; Table[b[n], {n,0,150}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
-
SageMath
def T(n, k): return binomial(n+1, k+1+(n+1)//2) + 3*binomial(n-1, k+((n+1)//2)) - 3*int(n==0) # T = A028323, essentially b=flatten([[T(n, k) for k in range(1+(n//2))] for n in range(101)]) [b[n] for n in (1..150) if b[n]%2==1] # G. C. Greubel, Jan 06 2024
Extensions
More terms from James Sellers
Comments