cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028325 Odd elements to the right of the central elements of the 5-Pascal triangle A028313.

Original entry on oeis.org

1, 1, 1, 7, 1, 19, 1, 27, 9, 1, 65, 1, 101, 11, 1, 231, 147, 57, 1, 69, 13, 1, 273, 1, 855, 355, 15, 1, 2277, 451, 111, 1, 5379, 3487, 1661, 127, 17, 1, 11583, 2223, 689, 1, 20449, 7371, 833, 19, 1, 43615, 34463, 21385, 10283, 3745, 995, 181, 1, 201, 21, 1
Offset: 0

Views

Author

Keywords

Comments

Odd elements of A028323. - G. C. Greubel, Jan 06 2024

Crossrefs

Programs

  • Magma
    T:= func< n,k | Binomial(n+1, k+1+Floor((n+1)/2)) + 3*Binomial(n-1, k+Floor((n+1)/2)) >; // T = A028323, essentially
    b:=[T(n, k): k in [0..Floor(n/2)], n in [0..100]];
    [b[n]: n in [1..150] | (b[n] mod 2) eq 1]; // G. C. Greubel, Jan 06 2024
    
  • Mathematica
    A028313[n_, k_]:= If[n<2, 1, Binomial[n,k] + 3*Binomial[n-2, k-1]];
    f= Table[A028313[n, k], {n,0,100}, {k,1+Floor[n/2],n}]//Flatten;
    b[n_]:= DeleteCases[{f[[n+1]]}, _?EvenQ];
    Table[b[n], {n,0,150}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
  • SageMath
    def T(n, k): return binomial(n+1, k+1+(n+1)//2) + 3*binomial(n-1, k+((n+1)//2)) - 3*int(n==0) # T = A028323, essentially
    b=flatten([[T(n, k) for k in range(1+(n//2))] for n in range(101)])
    [b[n] for n in (1..150) if b[n]%2==1] # G. C. Greubel, Jan 06 2024

Extensions

More terms from James Sellers