A028335 Number of decimal digits in n-th Mersenne prime.
1, 1, 2, 3, 4, 6, 6, 10, 19, 27, 33, 39, 157, 183, 386, 664, 687, 969, 1281, 1332, 2917, 2993, 3376, 6002, 6533, 6987, 13395, 25962, 33265, 39751, 65050, 227832, 258716, 378632, 420921, 895932, 909526, 2098960, 4053946, 6320430, 7235733, 7816230, 9152052, 9808358, 11185272
Offset: 1
Examples
A000668(6) = 2^17-1 = 131071 has 6 decimal digits, so a(6) = 6. A000668(10) = 2^89-1 = 618,970,019,642,690,137,449,562,111 has 27 digits, so a(10) = 27.
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 19.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..48 (terms 1..47 from Ivan Panchenko)
- Chris K. Caldwell, Mersenne Primes.
- GIMPS, List of Known Mersenne Prime Numbers.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2023.
Programs
-
Maple
seq(length(numtheory:-mersenne([i])),i=1..45); # Robert Israel, Feb 02 2018
-
Mathematica
IntegerLength[2^Array[MersennePrimeExponent, 45] - 1] (* Jean-François Alcover, Feb 17 2018 *) a[n_] := Floor[MersennePrimeExponent[n]/Log2[10]] + 1; Array[a, 48] (* Amiram Eldar, Oct 16 2024 *)
Formula
a(n) = floor(A000043(n)*log(2)/log(10)) + 1.
Extensions
More terms from Enoch Haga, Dec 18 2001
a(38) from Harry J. Smith, Apr 17 2003
a(39) from Omar E. Pol, Oct 28 2007
a(40)-a(41) from Jason Kimberley, Jan 05 2012
a(42)-a(45) from Patrick J. McNab, Feb 01 2018