A028342 Expansion of Product_{i>=1} (1 - x^i)^(-1/i); also of exp(Sum_{n>=1} (d(n)*x^n/n)) where d is number of divisors function.
1, 1, 3, 11, 59, 339, 2629, 20677, 202089, 2066201, 24322931, 296746251, 4193572723, 59806188571, 954679763829, 15845349818789, 285841314451409, 5293203821406897, 106976406006818659, 2201383054398314251
Offset: 0
Examples
For n = 3, there are 6 permutations that written as product of cycles are (1)(2)(3), (1)(23), (2)(13), (3)(12), (123), (132). Cycles of length one can only carry the label 1. Cycles of length two can carry the label either 1 or 2. Cycles of length three can carry the label either 1 or 3. Then a(3) = 11. - _Ricardo Gómez Aíza_, Mar 08 2023
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..445
- Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
- N. J. A. Sloane, Transforms
Programs
-
Mathematica
nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(1/k),{k,1,nmax}],{x,0,nmax}],x] * Range[0,nmax]! (* Vaclav Kotesovec, May 28 2015 *) a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 07 2018 *) nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 26 2019 *)
-
Maxima
a(n):=if n=0 then 1 else (n-1)!*sum(length(divisors(i+1))*a(n-i-1)/(n-i-1)!,i,0,n-1); /* Vladimir Kruchinin, Feb 27 2015 */
Formula
This is an expansion as an exponential generating function, i.e., as sum a(n)*x^n/n!.
Equivalently, a(n)/n! is the Euler transform of [1, 1/2, 1/3, 1/4, ...].
a(n) = (n-1)!*Sum_{i=0..n-1} d(i+1)*a(n-i-1)/(n-i-1)!, a(0)=1, where d(i) is number of divisors function. - Vladimir Kruchinin, Feb 27 2015
Conjecture: log(a(n)/n!) ~ log(2)/2 * log(n)^2. - Vaclav Kotesovec, Sep 15 2018
From Ricardo Gómez Aíza, Mar 08 2023: (Start)
The above conjecture is incorrect:
a(n)/n! ~ (w(n) / n)^(1 - gamma)/sqrt(2 * Pi * abs(log(w(n) / n))) * exp(c + w(n) + (log(w(n) / n))^2 / 2), where w(n) = W(e^gamma * n), W is the Lambert W function, gamma is the Euler-Mascheroni constant, c = Pi^2 / 12 - gamma^2 / 2 - 2 * gamma(1), and gamma(1) is the 1st Stieltjes number.
log(a(n)/n!) ~ (1/2) * log(n)^2. (End)
Extensions
Edited by Franklin T. Adams-Watters, Jul 03 2009
Comments