A168243
Expansion of e.g.f. Product_{i>=1} (1 + x^i)^(1/i).
Original entry on oeis.org
1, 1, 1, 5, 11, 59, 439, 2659, 13705, 160649, 2009681, 16966421, 183312931, 2078169235, 34203787591, 657685416179, 8054585463569, 104530824746129, 2595754682459425, 39767021562661669, 758079429084897211
Offset: 0
-
nmax=20; CoefficientList[Series[Product[(1+x^k)^(1/k),{k,1,nmax}],{x,0,nmax}],x] * Range[0,nmax]! (* Vaclav Kotesovec, May 28 2015 *)
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[-(-1)^d, {d, Divisors[k]}]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 07 2018 *)
A206303
Expansion of e.g.f.: Product_{n>=1} (1 - x^(2*n-1))^(-1/(2*n-1)).
Original entry on oeis.org
1, 1, 2, 8, 32, 184, 1264, 9568, 79232, 816128, 8769536, 101867776, 1322831872, 18122579968, 268425347072, 4436611211264, 73309336469504, 1303024044310528, 25235367455752192, 497968598916333568, 10431118327503650816, 234674470003955204096, 5359992446798535852032
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 32*x^4/4! + 184*x^5/5! + ...
The e.g.f. equals the product:
A(x) = (1-x)^(-1) * (1-x^3)^(-1/3) * (1-x^5)^(-1/5) * (1-x^7)^(-1/7) * (1-x^9)^(-1/9) * (1-x^11)^(-1/11) * ...
-
m:=40;
f:= func< x | (&*[1/(1 - x^(2*n-1))^(1/(2*n-1)) : n in [1..m+10]]) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Dec 21 2022
-
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(add(
`if`(d::odd, 1, 0), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..25); # Alois P. Heinz, Jan 24 2017
-
b[n_]:= b[n]= If[n==0, 1, Sum[Sum[If[OddQ[d], 1, 0], {d, Divisors[j]}]* b[n-j], {j, n}]/n];
a[n_]:= b[n]*n!;
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)
-
{a(n)=n!*polcoeff(prod(m=1,n,(1-x^(2*m-1)+x*O(x^n))^(-1/(2*m-1))),n)}
for(n=0,31,print1(a(n),", "))
-
m=40
def f(x): return 1/product( (1 - x^(2*n-1))^(1/(2*n-1)) for n in range(1,m+11) )
def A206303_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).egf_to_ogf().list()
A206303_list(m+1) # G. C. Greubel, Dec 21 2022
A294363
E.g.f.: exp(Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.
Original entry on oeis.org
1, 1, 5, 25, 193, 1481, 16021, 167665, 2220065, 30004273, 468585541, 7560838121, 138355144225, 2589359765305, 53501800316693, 1146089983207681, 26457132132638401, 632544682981967585, 16171678558995779845, 426926324177655018553, 11938570457328874969601
Offset: 0
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0),
A294361 (k=1),
A294362 (k=2).
-
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 05 2018 *)
a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 06 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, numdiv(k)*x^k))))
A318249
a(n) = (n - 1)! * d(n), where d(n) = number of divisors of n (A000005).
Original entry on oeis.org
1, 2, 4, 18, 48, 480, 1440, 20160, 120960, 1451520, 7257600, 239500800, 958003200, 24908083200, 348713164800, 6538371840000, 41845579776000, 2134124568576000, 12804747411456000, 729870602452992000, 9731608032706560000, 204363768686837760000, 2248001455555215360000, 206816133911079813120000
Offset: 1
-
Table[(n - 1)! DivisorSigma[0, n], {n, 1, 24}]
nmax = 24; Rest[CoefficientList[Series[Sum[Sum[x^(j k)/(j k), {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
nmax = 24; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
-
a(n) = (n-1)!*numdiv(n); \\ Michel Marcus, Aug 22 2018
A294462
Expansion of e.g.f. Product_{k>0} (1-k*x^k)^(-1/k).
Original entry on oeis.org
1, 1, 4, 18, 132, 900, 10080, 93240, 1285200, 16526160, 264600000, 3950100000, 81280584000, 1401728328000, 30861115084800, 663835444272000, 16425316331424000, 380082583808928000, 10885891543502976000, 279441709690118976000, 8697410321979899520000
Offset: 0
A295739
Expansion of e.g.f. exp(Sum_{k>=1} d(k)*x^k/k!), where d(k) is the number of divisors of k (A000005).
Original entry on oeis.org
1, 1, 3, 9, 36, 158, 802, 4434, 26978, 176637, 1243528, 9316519, 74065506, 621187700, 5480130494, 50662481722, 489552042241, 4931215686119, 51668848043427, 561981734692781, 6333882472789914, 73850048237680936, 889461218944314524, 11051067390893340510
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..553
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
-
a:=series(exp(add(tau(k)*x^k/k!,k=1..100)),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
-
nmax = 23; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] DivisorSigma[0, k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
A318917
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k/k), where phi is the Euler totient function A000010.
Original entry on oeis.org
1, 1, 2, 8, 38, 262, 1732, 16144, 153596, 1660796, 19415384, 264084064, 3664187848, 57366995272, 936097392752, 16131362629568, 302946516251408, 6034409270818576, 125044362929875744, 2756094464546395264, 63280996793936902496
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[EulerPhi[k]* a[n-k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 20}]
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 29 2022
A346545
E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(exp(x)/k).
Original entry on oeis.org
1, 1, 5, 26, 175, 1384, 12933, 135050, 1582901, 20380208, 286577757, 4352682256, 71247772121, 1244923243966, 23166410620637, 456940648889070, 9521696033968393, 208851154175983608, 4812156417656806393, 116112764199821653284, 2928658457243240595901, 77042063713731887400418
Offset: 0
-
nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(Exp[x]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Exp[Exp[x] Sum[DivisorSigma[0, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
A002746[n_] := Sum[Binomial[n, k] DivisorSigma[0, k] (k - 1)!, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A002746[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
A330351
Expansion of e.g.f. -Sum_{k>=1} log(1 - (exp(x) - 1)^k) / k.
Original entry on oeis.org
1, 3, 11, 57, 359, 2793, 25871, 273297, 3268199, 44132313, 659178431, 10710083937, 189256343639, 3636935896233, 75228664345391, 1657133255788977, 38770903634692679, 964609458391250553, 25470259163197390751, 709595190213796188417
Offset: 1
Cf.
A000005,
A000629,
A002746,
A008277,
A028342,
A308554,
A318249,
A330352,
A330353,
A330354,
A330445.
-
nmax = 20; CoefficientList[Series[-Sum[Log[1 - (Exp[x] - 1)^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
A338805
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} (1-x^j)^(-u/j).
Original entry on oeis.org
1, 2, 1, 4, 6, 1, 18, 28, 12, 1, 48, 170, 100, 20, 1, 480, 988, 870, 260, 30, 1, 1440, 7896, 7588, 3150, 560, 42, 1, 20160, 60492, 73808, 37408, 9100, 1064, 56, 1, 120960, 555264, 764524, 460656, 140448, 22428, 1848, 72, 1, 1451520, 5819904, 8448120, 5952700, 2162160, 436296, 49140, 3000, 90, 1
Offset: 1
exp(Sum_{n>0} u*d(n)*x^n/n) = 1 + u*x + (2*u+u^2)*x^2/2! + (4*u+6*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
2, 1;
4, 6, 1;
18, 28, 12, 1;
48, 170, 100, 20, 1;
480, 988, 870, 260, 30, 1;
1440, 7896, 7588, 3150, 560, 42, 1;
20160, 60492, 73808, 37408, 9100, 1064, 56, 1;
-
# The function BellMatrix is defined in A264428 (with column k = 0).
BellMatrix(n -> n!*NumberTheory:-SumOfDivisors(n+1, 0), 9);
# Alternative:
P := proc(n, x) option remember; if n = 0 then 1 else
(1/n)*x*add(NumberTheory:-SumOfDivisors(n-k, 0)*P(k, x), k=0..n-1) fi end:
Trow := n -> seq(n!*coeff(P(n, x), x, k), k = 1..n):
seq(Trow(n), n = 0..10); # Peter Luschny, Jun 01 2022
-
a[n_] := a[n] = If[n == 0, 0, (n - 1)! * DivisorSigma[0, n]]; T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], Sum[a[j] * Binomial[n - 1, j - 1] * T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
-
{T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, (1-x^j+x*O(x^n))^(-u/j)), n), k)}
-
a(n) = if(n<1, 0, (n-1)!*numdiv(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
Showing 1-10 of 39 results.
Comments