cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A168243 Expansion of e.g.f. Product_{i>=1} (1 + x^i)^(1/i).

Original entry on oeis.org

1, 1, 1, 5, 11, 59, 439, 2659, 13705, 160649, 2009681, 16966421, 183312931, 2078169235, 34203787591, 657685416179, 8054585463569, 104530824746129, 2595754682459425, 39767021562661669, 758079429084897211
Offset: 0

Views

Author

Vladeta Jovovic, Nov 21 2009

Keywords

Crossrefs

Cf. A028342.

Programs

  • Mathematica
    nmax=20; CoefficientList[Series[Product[(1+x^k)^(1/k),{k,1,nmax}],{x,0,nmax}],x] * Range[0,nmax]! (* Vaclav Kotesovec, May 28 2015 *)
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[-(-1)^d, {d, Divisors[k]}]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 07 2018 *)

Formula

E.g.f.: exp(Sum_{n>=1} A048272(n)*x^n/n).
Conjecture: log(a(n)/n!) ~ (log(2) - 1) * log(n). - Vaclav Kotesovec, Sep 10 2018

A206303 Expansion of e.g.f.: Product_{n>=1} (1 - x^(2*n-1))^(-1/(2*n-1)).

Original entry on oeis.org

1, 1, 2, 8, 32, 184, 1264, 9568, 79232, 816128, 8769536, 101867776, 1322831872, 18122579968, 268425347072, 4436611211264, 73309336469504, 1303024044310528, 25235367455752192, 497968598916333568, 10431118327503650816, 234674470003955204096, 5359992446798535852032
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 32*x^4/4! + 184*x^5/5! + ...
The e.g.f. equals the product:
A(x) = (1-x)^(-1) * (1-x^3)^(-1/3) * (1-x^5)^(-1/5) * (1-x^7)^(-1/7) * (1-x^9)^(-1/9) * (1-x^11)^(-1/11) * ...
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< x | (&*[1/(1 - x^(2*n-1))^(1/(2*n-1)) : n in [1..m+10]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Dec 21 2022
    
  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, 1, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(n)*n!:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 24 2017
  • Mathematica
    b[n_]:= b[n]= If[n==0, 1, Sum[Sum[If[OddQ[d], 1, 0], {d, Divisors[j]}]* b[n-j], {j, n}]/n];
    a[n_]:= b[n]*n!;
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)
  • PARI
    {a(n)=n!*polcoeff(prod(m=1,n,(1-x^(2*m-1)+x*O(x^n))^(-1/(2*m-1))),n)}
    for(n=0,31,print1(a(n),", "))
    
  • SageMath
    m=40
    def f(x): return 1/product( (1 - x^(2*n-1))^(1/(2*n-1)) for n in range(1,m+11) )
    def A206303_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A206303_list(m+1) # G. C. Greubel, Dec 21 2022

Formula

a(n)/n! is the Euler transform of [1, 0, 1/3, 0, 1/5, 0, 1/7, 0, ...].
E.g.f.: A(x) = B(x) / sqrt(B(x^2)), where B(x) = e.g.f. of A028342.
E.g.f. A(x) satisfies: Product_{n>=0} A(x^(2^n))^(1/2^n) = e.g.f. of A028342.
E.g.f.: exp(Sum_{k>=1} (d(2*k) - d(k))*x^k/k), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Sep 17 2018

A294363 E.g.f.: exp(Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.

Original entry on oeis.org

1, 1, 5, 25, 193, 1481, 16021, 167665, 2220065, 30004273, 468585541, 7560838121, 138355144225, 2589359765305, 53501800316693, 1146089983207681, 26457132132638401, 632544682981967585, 16171678558995779845, 426926324177655018553, 11938570457328874969601
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 13 2017: (Start)
The terms of the sequence appear to be of the form 4*m + 1.
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(5*n+2) == 0 (mod 5); a(5*n+3) == 0 (mod 5); a(13*n+9) == 0 (mod 13). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0), A294361 (k=1), A294362 (k=2).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 05 2018 *)
    a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 06 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, numdiv(k)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000005(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
Conjecture: log(a(n)/n!) ~ sqrt(2*n*log(n)). - Vaclav Kotesovec, Sep 07 2018

A318249 a(n) = (n - 1)! * d(n), where d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 2, 4, 18, 48, 480, 1440, 20160, 120960, 1451520, 7257600, 239500800, 958003200, 24908083200, 348713164800, 6538371840000, 41845579776000, 2134124568576000, 12804747411456000, 729870602452992000, 9731608032706560000, 204363768686837760000, 2248001455555215360000, 206816133911079813120000
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n - 1)! DivisorSigma[0, n], {n, 1, 24}]
    nmax = 24; Rest[CoefficientList[Series[Sum[Sum[x^(j k)/(j k), {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
    nmax = 24; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
  • PARI
    a(n) = (n-1)!*numdiv(n); \\ Michel Marcus, Aug 22 2018

Formula

E.g.f.: Sum_{k>=1} Sum_{j>=1} x^(j*k)/(j*k).
E.g.f.: -log(Product_{k>=1} (1 - x^k)^(1/k)).
E.g.f.: A(x) = log(B(x)), where B(x) = e.g.f. of A028342.
a(p^k) = (k + 1)*(p^k - 1)!, where p is a prime.

A294462 Expansion of e.g.f. Product_{k>0} (1-k*x^k)^(-1/k).

Original entry on oeis.org

1, 1, 4, 18, 132, 900, 10080, 93240, 1285200, 16526160, 264600000, 3950100000, 81280584000, 1401728328000, 30861115084800, 663835444272000, 16425316331424000, 380082583808928000, 10885891543502976000, 279441709690118976000, 8697410321979899520000
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2017

Keywords

Crossrefs

Column k=1 of A294761.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-k*x^k)^(1/k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} A055225(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(k-1)*x^(j*k)/k). - Ilya Gutkovskiy, May 28 2018

A295739 Expansion of e.g.f. exp(Sum_{k>=1} d(k)*x^k/k!), where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, 1, 3, 9, 36, 158, 802, 4434, 26978, 176637, 1243528, 9316519, 74065506, 621187700, 5480130494, 50662481722, 489552042241, 4931215686119, 51668848043427, 561981734692781, 6333882472789914, 73850048237680936, 889461218944314524, 11051067390893340510
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 26 2017

Keywords

Comments

Exponential transform of A000005.

Crossrefs

Programs

  • Maple
    a:=series(exp(add(tau(k)*x^k/k!,k=1..100)),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] DivisorSigma[0, k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]

Formula

E.g.f.: exp(Sum_{k>=1} A000005(k)*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A000005(k)*a(n-k).

A318917 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k/k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 2, 8, 38, 262, 1732, 16144, 153596, 1660796, 19415384, 264084064, 3664187848, 57366995272, 936097392752, 16131362629568, 302946516251408, 6034409270818576, 125044362929875744, 2756094464546395264, 63280996793936902496
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[EulerPhi[k]* a[n-k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 20}]
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 29 2022

Formula

a(n)/n! ~ 3^(1/4) * exp(2*sqrt(6*n)/Pi) / (Pi * 2^(3/4) * n^(3/4)).
E.g.f.: Product_{k>=1} 1 / (1 - x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} mu(gcd(k,j)). - Ilya Gutkovskiy, Aug 17 2021
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} phi(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 29 2022
E.g.f.: exp( Sum_{n>=1} (mu(n)/n) * x^n/(1 - x^n) ), where mu(n) = A008683(n). - Paul D. Hanna, Jun 24 2023

A346545 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(exp(x)/k).

Original entry on oeis.org

1, 1, 5, 26, 175, 1384, 12933, 135050, 1582901, 20380208, 286577757, 4352682256, 71247772121, 1244923243966, 23166410620637, 456940648889070, 9521696033968393, 208851154175983608, 4812156417656806393, 116112764199821653284, 2928658457243240595901, 77042063713731887400418
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 16 2021

Keywords

Comments

Exponential transform of A002746.

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(Exp[x]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Exp[x] Sum[DivisorSigma[0, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    A002746[n_] := Sum[Binomial[n, k] DivisorSigma[0, k] (k - 1)!, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A002746[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]

Formula

E.g.f.: exp( exp(x) * Sum_{k>=1} d(k) * x^k / k ).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A002746(k) * a(n-k).

A330351 Expansion of e.g.f. -Sum_{k>=1} log(1 - (exp(x) - 1)^k) / k.

Original entry on oeis.org

1, 3, 11, 57, 359, 2793, 25871, 273297, 3268199, 44132313, 659178431, 10710083937, 189256343639, 3636935896233, 75228664345391, 1657133255788977, 38770903634692679, 964609458391250553, 25470259163197390751, 709595190213796188417
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[-Sum[Log[1 - (Exp[x] - 1)^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]

Formula

E.g.f.: Sum_{i>=1} Sum_{j>=1} (exp(x) - 1)^(i*j) / (i*j).
E.g.f.: log(Product_{k>=1} 1 / (1 - (exp(x) - 1)^k)^(1/k)).
G.f.: Sum_{k>=1} (k - 1)! * tau(k) * x^k / Product_{j=1..k} (1 - j*x), where tau = A000005.
a(n) = Sum_{k=1..n} Stirling2(n,k) * (k - 1)! * tau(k).
a(n) ~ n! * (log(n) + 2*gamma - log(2) - log(log(2))) / (n * (log(2))^n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 14 2019

A338805 Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} (1-x^j)^(-u/j).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 18, 28, 12, 1, 48, 170, 100, 20, 1, 480, 988, 870, 260, 30, 1, 1440, 7896, 7588, 3150, 560, 42, 1, 20160, 60492, 73808, 37408, 9100, 1064, 56, 1, 120960, 555264, 764524, 460656, 140448, 22428, 1848, 72, 1, 1451520, 5819904, 8448120, 5952700, 2162160, 436296, 49140, 3000, 90, 1
Offset: 1

Views

Author

Seiichi Manyama, Nov 10 2020

Keywords

Comments

Also the Bell transform of A318249.
If we use sigma(n,1) in Vladeta Jovovic's formulas in A008298 then one gets the D'Arcais numbers, if we use sigma(n,0) then this sequence arises. # Peter Luschny, Jun 01 2022

Examples

			exp(Sum_{n>0} u*d(n)*x^n/n) = 1 + u*x + (2*u+u^2)*x^2/2! + (4*u+6*u^2+u^3)*x^3/3! + ... .
Triangle begins:
      1;
      2,     1;
      4,     6,     1;
     18,    28,    12,     1;
     48,   170,   100,    20,    1;
    480,   988,   870,   260,   30,    1;
   1440,  7896,  7588,  3150,  560,   42,  1;
  20160, 60492, 73808, 37408, 9100, 1064, 56, 1;
		

Crossrefs

Column k=1..3 give A318249, A338810, A338811.
Row sums give A028342.
Cf. A000005 (d(n)), A008298, A264428.

Programs

  • Maple
    # The function BellMatrix is defined in A264428 (with column k = 0).
    BellMatrix(n -> n!*NumberTheory:-SumOfDivisors(n+1, 0), 9);
    # Alternative:
    P := proc(n, x) option remember; if n = 0 then 1 else
    (1/n)*x*add(NumberTheory:-SumOfDivisors(n-k, 0)*P(k, x), k=0..n-1) fi end:
    Trow := n -> seq(n!*coeff(P(n, x), x, k), k = 1..n):
    seq(Trow(n), n = 0..10); # Peter Luschny, Jun 01 2022
  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, (n - 1)! * DivisorSigma[0, n]]; T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], Sum[a[j] * Binomial[n - 1, j - 1] * T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    {T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, (1-x^j+x*O(x^n))^(-u/j)), n), k)}
    
  • PARI
    a(n) = if(n<1, 0, (n-1)!*numdiv(n));
    T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))

Formula

E.g.f.: exp(Sum_{n>0} u*d(n)*x^n/n), where d(n) is the number of divisors of n.
T(n; u) = Sum_{k=1..n} T(n, k)*u^k is given by T(n; u) = u * (n-1)! * Sum_{k=1..n} d(k)*T(n-k; u)/(n-k)!, T(0; u) = 1.
T(n, k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} d(i_j)/i_j.
Showing 1-10 of 39 results. Next