A295792
Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(1/k).
Original entry on oeis.org
1, 2, 6, 28, 152, 1008, 7936, 70208, 689664, 7618816, 92013824, 1202362368, 17053410304, 258928934912, 4197838491648, 72840915607552, 1334630802489344, 25799982480556032, 527187369241870336, 11292834065764450304, 253498950169144590336, 5965951790211865772032, 146341359815078034538496
Offset: 0
-
a:=series(mul(((1+x^k)/(1-x^k))^(1/k),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
-
nmax = 22; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
A318913
Expansion of e.g.f. Product_{k>=1} 1/(1 - x^prime(k))^(1/prime(k)).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 385, 1854, 18193, 153656, 1924641, 17123930, 276117721, 2880135972, 51150361249, 738748900694, 11608748988705, 198747251005424, 4029150617813953, 67937635488741426, 1607525018948543401, 32739373317847964060, 757174325538283357761, 16444280000832495199982
Offset: 0
-
seq(n!*coeff(series(mul(1/(1-x^ithprime(k))^(1/ithprime(k)),k=1..100),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 09 2019
-
nmax = 23; CoefficientList[Series[Product[1/(1 - x^Prime[k])^(1/Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Exp[Sum[PrimeNu[k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = (n - 1)! Sum[PrimeNu[k] a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-isprime(k)*x^k)^(1/k)))) \\ Seiichi Manyama, Feb 28 2022
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, omega(k)*x^k/k)))) \\ Seiichi Manyama, Feb 28 2022
A294392
E.g.f.: exp(Sum_{n>=1} A001227(n) * x^n).
Original entry on oeis.org
1, 1, 3, 19, 97, 801, 7411, 73123, 821409, 10977697, 151612291, 2286137811, 38308830913, 669163118209, 12649211055027, 257559356068771, 5432325991339201, 121949878889492673, 2907330680764076419, 71860237654425159187, 1871308081194213959841
Offset: 0
E.g.f.: exp(Sum_{n>=1} (Sum_{d|n and d is odd} d^k) * x^n): this sequence (k=0),
A294394 (k=1),
A294395 (k=2).
-
a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSum[k, Mod[#, 2] &]*a[n - k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 07 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sumdiv(k, d, d%2)*x^k))))
A295794
Expansion of e.g.f. Product_{k>=1} exp(x^k/(1 + x^k)).
Original entry on oeis.org
1, 1, 1, 13, 25, 241, 2761, 14701, 153553, 1903105, 27877681, 263555821, 4788201001, 65083782193, 1040877257785, 24098794612621, 373918687272481, 7393663746307201, 164894196647876833, 3504497611085823565, 81863829346282866361, 2257321249626793901041, 49755091945025205954601
Offset: 0
-
a:=series(mul(exp(x^k/(1+x^k)),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
-
nmax = 22; CoefficientList[Series[Product[Exp[x^k/(1 + x^k)], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[x D[Log[Product[(1 + x^k)^(1/k), {k, 1, nmax}]], x]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[-k Sum[(-1)^d, {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 22}]
A320650
Expansion of 1/(1 - Sum_{k>=1} x^k/(1 - x^(2*k))).
Original entry on oeis.org
1, 1, 2, 5, 10, 22, 48, 103, 222, 481, 1038, 2241, 4842, 10456, 22582, 48776, 105342, 227514, 491386, 1061281, 2292132, 4950510, 10692006, 23092378, 49874474, 107717891, 232646956, 502466304, 1085216744, 2343829586, 5062156694, 10933145610, 23613191032
Offset: 0
-
a:=series(1/(1-add(x^k/(1-x^(2*k)),k=1..100)),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 02 2019
-
nmax = 32; CoefficientList[Series[1/(1 - Sum[x^k/(1 - x^(2 k)), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1)/2)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Sum[Mod[d, 2], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
A318912
Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(mu(k)^2/k), where mu = Möbius function (A008683).
Original entry on oeis.org
1, 1, 3, 11, 53, 309, 2359, 18367, 168489, 1690217, 19416491, 233144691, 3187062493, 44901291421, 700058510943, 11509417045799, 200586478516049, 3680237286827217, 72326917665944659, 1467930587827522267, 31855597406715020421, 718484783876745110021, 16993553696264436052103
Offset: 0
-
seq(n!*coeff(series(mul(1/(1-x^k)^(mobius(k)^2/k),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
-
nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^(MoebiusMu[k]^2/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[Sum[2^PrimeNu[k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = (n - 1)! Sum[2^PrimeNu[k] a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
A318914
Expansion of e.g.f. Product_{p prime, k>=1} 1/(1 - x^(p^k))^(1/(p^k)).
Original entry on oeis.org
1, 0, 1, 2, 15, 44, 475, 2274, 33313, 227240, 2920041, 26754650, 469513231, 4613913732, 85842524755, 1174844041994, 24672317426625, 334246510927184, 7985602649948113, 127351500133158450, 3282809137540001551, 60776696924693716700, 1556379682561575238731, 32568139442090869594802
Offset: 0
-
seq(n!*coeff(series(exp(add(bigomega(k)*x^k/k,k=1..100)),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 09 2019
-
nmax = 23; CoefficientList[Series[Product[1/(1 - x^k)^(Boole[PrimePowerQ[k]]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Exp[Sum[PrimeOmega[k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = (n - 1)! Sum[PrimeOmega[k] a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
A345871
Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(1/(2*k!)).
Original entry on oeis.org
1, 1, 2, 7, 23, 116, 707, 4775, 34092, 326723, 3255927, 35131570, 404387205, 5178352921, 72399248378, 1124473250815, 17051538263075, 287692287405292, 5225129815132463, 97469631563584567, 1891891950093538380, 40846072052629411027, 895935864764993940483
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, ((1+x^k)/(1-x^k))^(1/(2*k!)))))
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=0, N\2, (exp(x^(2*k+1))-1)/(2*k+1)))))
A362696
Expansion of e.g.f. Product_{k>0} (1 - x^(3*k-2))^(-1/(3*k-2)).
Original entry on oeis.org
1, 1, 2, 6, 30, 150, 900, 7020, 62460, 562140, 5984280, 67252680, 863165160, 11700148680, 173098134000, 2625661170000, 45310413258000, 782198417206800, 14310269286746400, 280333959468789600, 6002139207488767200, 129820528515538159200, 2934651197018947982400
Offset: 0
A362697
Expansion of e.g.f. Product_{k>0} (1 - x^(3*k-1))^(-1/(3*k-1)).
Original entry on oeis.org
1, 0, 1, 0, 9, 24, 225, 504, 16065, 27216, 1555281, 6123600, 159249321, 779262120, 31816914129, 240363179784, 8207359913025, 66059979227424, 2145292484152545, 19782668403572256, 1015331126023222281, 7961977144683689400, 454920488042137314561
Offset: 0
Showing 1-10 of 17 results.
Comments