cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A320651 Expansion of 1/(1 - Sum_{k>=1} k*x^k/(1 + x^k)).

Original entry on oeis.org

1, 1, 2, 7, 14, 36, 90, 213, 520, 1271, 3082, 7493, 18238, 44324, 107782, 262142, 637368, 1549870, 3768886, 9164499, 22285034, 54190024, 131771616, 320424614, 779166270, 1894671121, 4607207304, 11203190618, 27242414612, 66244451632, 161084380040, 391703392954
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 18 2018

Keywords

Comments

Invert transform of A000593.

Crossrefs

Programs

  • Maple
    a:=series(1/(1-add(k*x^k/(1+x^k),k=1..100)),x=0,32): seq(coeff(a,x,n),n=0..31); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 31; CoefficientList[Series[1/(1 - Sum[k x^k/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 31; CoefficientList[Series[24/(25 - EllipticTheta[2, 0, x]^4 - EllipticTheta[3, 0, x]^4), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Sum[Mod[d, 2] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 31}]

Formula

G.f.: 1/(1 - x * (d/dx) log(Product_{k>=1} (1 + x^k))).
G.f.: 24/(25 - theta_2(x)^4 - theta_3(x)^4), where theta_() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A000593(k)*a(n-k).

A327731 Expansion of Product_{i>=1, j>=1} (1 + x^(i*(2*j - 1))).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 8, 10, 14, 21, 28, 36, 51, 65, 86, 117, 148, 190, 251, 316, 402, 519, 647, 814, 1032, 1282, 1593, 1994, 2457, 3029, 3754, 4591, 5617, 6895, 8381, 10193, 12411, 14999, 18125, 21919, 26359, 31672, 38074, 45556, 54468, 65134, 77576, 92322
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Weigh transform of A001227.

Crossrefs

Programs

  • Mathematica
    nmax = 47; CoefficientList[Series[Product[(1 + x^k)^DivisorSum[k, Mod[#, 2] &], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d DivisorSum[d, Mod[#, 2] &], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 47}]
  • PARI
    seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^numdiv(k>>valuation(k, 2))))} \\ Andrew Howroyd, Sep 23 2019

Formula

G.f.: Product_{k>=1} (1 + x^k)^A001227(k).
Showing 1-2 of 2 results.