cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A028342 Expansion of Product_{i>=1} (1 - x^i)^(-1/i); also of exp(Sum_{n>=1} (d(n)*x^n/n)) where d is number of divisors function.

Original entry on oeis.org

1, 1, 3, 11, 59, 339, 2629, 20677, 202089, 2066201, 24322931, 296746251, 4193572723, 59806188571, 954679763829, 15845349818789, 285841314451409, 5293203821406897, 106976406006818659, 2201383054398314251
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Nov 14 2017: (Start)
It appears that the sequence taken modulo 10 is periodic with period 10. More generally, we conjecture
(1) for k odd, a(n+k) + a(n) is divisible by k: if true, then for k odd, the sequence a(n) taken modulo k would be periodic with period dividing 2*k.
(2) for even k congruent to 0, 2 or 6 modulo 8 then a(n+k) - a(n) is divisible by k; in these cases the sequence a(n) taken modulo k would be periodic with period dividing k.
(3) for even k congruent to 4 modulo 8 then 2*( a(n+k) - a(n) ) is divisible by k; in this case the sequence 2*a(n) taken modulo k would be periodic with period dividing k. (End)
a(n) is the number of colored permutations by number of divisors, that is, permutations whose decomposition into a product of cycles gives the result that each cycle carries a label that is a divisor of its corresponding length. - Ricardo Gómez Aíza, Mar 08 2023

Examples

			For n = 3, there are 6 permutations that written as product of cycles are (1)(2)(3), (1)(23), (2)(13), (3)(12), (123), (132). Cycles of length one can only carry the label 1. Cycles of length two can carry the label either 1 or 2. Cycles of length three can carry the label either 1 or 3. Then a(3) = 11. - _Ricardo Gómez Aíza_, Mar 08 2023
		

Crossrefs

Programs

  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(1/k),{k,1,nmax}],{x,0,nmax}],x] * Range[0,nmax]! (* Vaclav Kotesovec, May 28 2015 *)
    a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 07 2018 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 26 2019 *)
  • Maxima
    a(n):=if n=0 then 1 else (n-1)!*sum(length(divisors(i+1))*a(n-i-1)/(n-i-1)!,i,0,n-1); /* Vladimir Kruchinin, Feb 27 2015 */

Formula

This is an expansion as an exponential generating function, i.e., as sum a(n)*x^n/n!.
Equivalently, a(n)/n! is the Euler transform of [1, 1/2, 1/3, 1/4, ...].
a(n) = (n-1)!*Sum_{i=0..n-1} d(i+1)*a(n-i-1)/(n-i-1)!, a(0)=1, where d(i) is number of divisors function. - Vladimir Kruchinin, Feb 27 2015
Conjecture: log(a(n)/n!) ~ log(2)/2 * log(n)^2. - Vaclav Kotesovec, Sep 15 2018
From Ricardo Gómez Aíza, Mar 08 2023: (Start)
The above conjecture is incorrect:
a(n)/n! ~ (w(n) / n)^(1 - gamma)/sqrt(2 * Pi * abs(log(w(n) / n))) * exp(c + w(n) + (log(w(n) / n))^2 / 2), where w(n) = W(e^gamma * n), W is the Lambert W function, gamma is the Euler-Mascheroni constant, c = Pi^2 / 12 - gamma^2 / 2 - 2 * gamma(1), and gamma(1) is the 1st Stieltjes number.
log(a(n)/n!) ~ (1/2) * log(n)^2. (End)

Extensions

Edited by Franklin T. Adams-Watters, Jul 03 2009

A206303 Expansion of e.g.f.: Product_{n>=1} (1 - x^(2*n-1))^(-1/(2*n-1)).

Original entry on oeis.org

1, 1, 2, 8, 32, 184, 1264, 9568, 79232, 816128, 8769536, 101867776, 1322831872, 18122579968, 268425347072, 4436611211264, 73309336469504, 1303024044310528, 25235367455752192, 497968598916333568, 10431118327503650816, 234674470003955204096, 5359992446798535852032
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 32*x^4/4! + 184*x^5/5! + ...
The e.g.f. equals the product:
A(x) = (1-x)^(-1) * (1-x^3)^(-1/3) * (1-x^5)^(-1/5) * (1-x^7)^(-1/7) * (1-x^9)^(-1/9) * (1-x^11)^(-1/11) * ...
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< x | (&*[1/(1 - x^(2*n-1))^(1/(2*n-1)) : n in [1..m+10]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Dec 21 2022
    
  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, 1, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(n)*n!:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 24 2017
  • Mathematica
    b[n_]:= b[n]= If[n==0, 1, Sum[Sum[If[OddQ[d], 1, 0], {d, Divisors[j]}]* b[n-j], {j, n}]/n];
    a[n_]:= b[n]*n!;
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)
  • PARI
    {a(n)=n!*polcoeff(prod(m=1,n,(1-x^(2*m-1)+x*O(x^n))^(-1/(2*m-1))),n)}
    for(n=0,31,print1(a(n),", "))
    
  • SageMath
    m=40
    def f(x): return 1/product( (1 - x^(2*n-1))^(1/(2*n-1)) for n in range(1,m+11) )
    def A206303_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A206303_list(m+1) # G. C. Greubel, Dec 21 2022

Formula

a(n)/n! is the Euler transform of [1, 0, 1/3, 0, 1/5, 0, 1/7, 0, ...].
E.g.f.: A(x) = B(x) / sqrt(B(x^2)), where B(x) = e.g.f. of A028342.
E.g.f. A(x) satisfies: Product_{n>=0} A(x^(2^n))^(1/2^n) = e.g.f. of A028342.
E.g.f.: exp(Sum_{k>=1} (d(2*k) - d(k))*x^k/k), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Sep 17 2018

A298906 Expansion of e.g.f. Product_{k>=1} (1 + x^k)^(1/k!).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 77, 29, -4289, -14836, 283812, 1316855, -16548717, -292820579, 911200565, 52594983250, 100157634380, -3444629077653, 7961210574683, -2170805244559295, -41176659971108705, 348776485253486302, 35663019455311634058, 513993485453689440281
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 18 2018

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 2*x^4/4! + x^5/5! + 77*x^6/6! + ... = (1 + x) * (1 + x^2)^(1/2!) * (1 + x^3)^(1/3!) * (1 + x^4)^(1/4!) * ...
		

Crossrefs

Programs

  • Maple
    a:=series(exp(add((-1)^(k+1)*(exp(x^k)-1)/k,k=1..100)),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) (Exp[x^k] - 1)/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1)/(d - 1)!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 23}]

Formula

E.g.f.: exp(Sum_{k>=1} (-1)^(k+1)*(exp(x^k) - 1)/k).
E.g.f.: Product_{k>=1} B(x^k)^((-1)^(k+1)/k), where B(x) = exp(exp(x) - 1) = e.g.f. of Bell numbers (A000110).

A356392 Expansion of e.g.f. ( Product_{k>0} (1+x^k)^(1/k) )^(1/(1-x)).

Original entry on oeis.org

1, 1, 3, 17, 99, 769, 6877, 70769, 807321, 10366037, 145721531, 2226927405, 36741898267, 651709348653, 12352436747141, 249152882935829, 5320544034698353, 120008265471779529, 2850195632804141203, 71058458112629765449, 1855470903727083981651
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1+x^k)^(1/k))^(1/(1-x))))
    
  • PARI
    a356389(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1))/k);
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356389(j)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A356389(k) * binomial(n-1,k-1) * a(n-k).

A294356 E.g.f.: Product_{k>0} (1+x^k)^(-1/k).

Original entry on oeis.org

1, -1, 1, -5, 23, -119, 619, -4759, 48145, -476657, 4249961, -48286061, 691331431, -9132207655, 117900772963, -2025161870159, 37607411624609, -628236985455329, 10768798391659345, -215626810984559317, 4751529623277906871, -105427459848063440471
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1+x^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 29 2017 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1/(1+x^k)^(1/k))))

A295792 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(1/k).

Original entry on oeis.org

1, 2, 6, 28, 152, 1008, 7936, 70208, 689664, 7618816, 92013824, 1202362368, 17053410304, 258928934912, 4197838491648, 72840915607552, 1334630802489344, 25799982480556032, 527187369241870336, 11292834065764450304, 253498950169144590336, 5965951790211865772032, 146341359815078034538496
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2017

Keywords

Comments

Convolution of A028342 and A168243. - Vaclav Kotesovec, Sep 07 2018

Crossrefs

Programs

  • Maple
    a:=series(mul(((1+x^k)/(1-x^k))^(1/k),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(2*Sum_{k>=1} A001227(k)*x^k/k).
E.g.f.: exp(Sum_{k>=1} A054844(k)*x^k/k).

A318696 Expansion of e.g.f. Product_{i>=1, j>=1} (1 + x^(i*j))^(1/(i*j)).

Original entry on oeis.org

1, 1, 2, 10, 34, 218, 1708, 12556, 97340, 1139932, 12602584, 142757624, 1983086488, 26745019000, 402951386576, 7181178238672, 115410887636752, 2039658743085584, 42354537803172640, 815690033731561888, 17593347085888752416, 416765224159172991136, 9379433694333768563392
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul((1+x^k)^(tau(k)/k),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Product[(1 + x^(i j))^(1/(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[0, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]
    nmax = 22; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k]/k, j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 01 2018 *)

Formula

E.g.f.: Product_{k>=1} (1 + x^k)^(tau(k)/k), where tau = number of divisors (A000005).
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*tau(d) ) * x^k/k).

A318769 Expansion of e.g.f. Product_{k>=1} (1 + x^k)^(sigma(k)/k), where sigma(k) is the sum of the divisors of k.

Original entry on oeis.org

1, 1, 3, 17, 83, 639, 5749, 53227, 561273, 7216577, 94292531, 1352253561, 21657812923, 359338829407, 6460367397093, 126124578755939, 2527688612931569, 54137820027005697, 1236730462664172643, 29137619131277727457, 725282418459957414051, 18981526480933601454911
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 03 2018

Keywords

Comments

a(n)/n! is the weigh transform of [1, 3/2, 4/3, 7/4, 6/5, ... = sums of reciprocals of divisors of 1, 2, 3, 4, 5, ...].

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc(n) option remember; `if`(n = 0, 1, add(add(-(-1)^(j/d)*sigma(d), d = divisors(j))*a(n-j), j = 1..n)/n) end proc; seq(n!*a(n), n = 0..20); # Vaclav Kotesovec, Sep 04 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) x^(j k)/(j k (1 - x^(j k))), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d DivisorSigma[-1, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
    nmax = 21; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[1, k]/k, j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2018 *)

Formula

E.g.f.: Product_{k>=1} (1 + x^k)^(A017665(k)/A017666(k)).
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(j*k*(1 - x^(j*k)))).
log(a(n)/n!) ~ sqrt(n/2) * Pi^2 / 3. - Vaclav Kotesovec, Sep 04 2018
a(n)/n! ~ c * exp(sqrt(n/2)*Pi^2/3) / n^(3/4 + log(2)/4), where c = 0.15653645678497413538057076667218805302154965061194080137... - Vaclav Kotesovec, Sep 05 2018

A338814 Expansion of e.g.f. log(Product_{k>0} (1 + x^k)^(1/k)).

Original entry on oeis.org

1, 0, 4, -6, 48, 0, 1440, -10080, 120960, 0, 7257600, -79833600, 958003200, 0, 348713164800, -3923023104000, 41845579776000, 0, 12804747411456000, -243290200817664000, 9731608032706560000, 0, 2248001455555215360000, -103408066955539906560000
Offset: 1

Views

Author

Seiichi Manyama, Nov 10 2020

Keywords

Crossrefs

Column 1 of A338813.

Programs

  • Mathematica
    a[n_] := (n - 1)! * DivisorSum[n, (-1)^(# + 1) &]; Array[a, 25] (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(log(prod(k=1, N, (1+x^k)^(1/k)))))
    
  • PARI
    {a(n) = if(n<1, 0, (n-1)!*sumdiv(n, d, (-1)^(d+1)))}

Formula

a(n) = (n-1)! * A048272(n).

A295794 Expansion of e.g.f. Product_{k>=1} exp(x^k/(1 + x^k)).

Original entry on oeis.org

1, 1, 1, 13, 25, 241, 2761, 14701, 153553, 1903105, 27877681, 263555821, 4788201001, 65083782193, 1040877257785, 24098794612621, 373918687272481, 7393663746307201, 164894196647876833, 3504497611085823565, 81863829346282866361, 2257321249626793901041, 49755091945025205954601
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2017

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(exp(x^k/(1+x^k)),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Exp[x^k/(1 + x^k)], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[x D[Log[Product[(1 + x^k)^(1/k), {k, 1, nmax}]], x]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[-k Sum[(-1)^d, {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp(Sum_{k>=1} A048272(k)*x^k).
E.g.f.: exp(x*f'(x)), where f(x) = log(Product_{k>=1} (1 + x^k)^(1/k)).
a(n) ~ exp(2*sqrt(n*log(2)) - 1/4 - n) * n^(n - 1/4) * log(2)^(1/4) / sqrt(2). - Vaclav Kotesovec, Sep 07 2018
Showing 1-10 of 22 results. Next