cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A294363 E.g.f.: exp(Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.

Original entry on oeis.org

1, 1, 5, 25, 193, 1481, 16021, 167665, 2220065, 30004273, 468585541, 7560838121, 138355144225, 2589359765305, 53501800316693, 1146089983207681, 26457132132638401, 632544682981967585, 16171678558995779845, 426926324177655018553, 11938570457328874969601
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 13 2017: (Start)
The terms of the sequence appear to be of the form 4*m + 1.
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(5*n+2) == 0 (mod 5); a(5*n+3) == 0 (mod 5); a(13*n+9) == 0 (mod 13). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0), A294361 (k=1), A294362 (k=2).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 05 2018 *)
    a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 06 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, numdiv(k)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000005(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
Conjecture: log(a(n)/n!) ~ sqrt(2*n*log(n)). - Vaclav Kotesovec, Sep 07 2018

A340903 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * sigma_0(k) * a(n-k).

Original entry on oeis.org

1, 1, 4, 20, 139, 1192, 12318, 148318, 2041754, 31616757, 544005172, 10296204096, 212589150300, 4755177958104, 114545293676588, 2956316416222300, 81386676426000157, 2380590235918735576, 73729207700492304684, 2410324868012471929670, 82944575892433740648996
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 26 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] DivisorSigma[0, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[1/(1 - Sum[Sum[x^(i j)/(i j)!, {j, 1, nmax}], {i, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, numdiv(k)*x^k/k!)))) \\ Seiichi Manyama, Mar 29 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, numdiv(k)*binomial(n, k)*a(n-k))); \\ Seiichi Manyama, Mar 29 2022

Formula

E.g.f.: 1 / (1 - Sum_{i>=1} Sum_{j>=1} x^(i*j) / (i*j)!).
E.g.f.: 1 / (1 - Sum_{k>=1} sigma_0(k) * x^k/k!). - Seiichi Manyama, Mar 29 2022

A300011 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k/k!), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, 1, 2, 6, 20, 80, 362, 1820, 10084, 60522, 391864, 2714514, 20001700, 156107224, 1284705246, 11112088358, 100698613720, 953478331288, 9410963022318, 96614921664444, 1029705968813656, 11373102766644372, 129972789566984682, 1534638410054873892, 18696544357738885720
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2018

Keywords

Comments

Exponential transform of A000010.

Examples

			E.g.f.: A(x) = 1 + x/1! + 2*x^2/2! + 6*x^3/3! + 20*x^4/4! + 80*x^5/5! + 362*x^6/6! + 1820*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
          binomial(n-1, j-1)*numtheory[phi](j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 09 2018
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[Sum[EulerPhi[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[EulerPhi[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, eulerphi(k)*binomial(n-1, k-1)*a(n-k))); \\ Seiichi Manyama, Feb 27 2022

Formula

E.g.f.: exp(Sum_{k>=1} A000010(k)*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} phi(k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Feb 27 2022

A295794 Expansion of e.g.f. Product_{k>=1} exp(x^k/(1 + x^k)).

Original entry on oeis.org

1, 1, 1, 13, 25, 241, 2761, 14701, 153553, 1903105, 27877681, 263555821, 4788201001, 65083782193, 1040877257785, 24098794612621, 373918687272481, 7393663746307201, 164894196647876833, 3504497611085823565, 81863829346282866361, 2257321249626793901041, 49755091945025205954601
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2017

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(exp(x^k/(1+x^k)),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Exp[x^k/(1 + x^k)], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[x D[Log[Product[(1 + x^k)^(1/k), {k, 1, nmax}]], x]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[-k Sum[(-1)^d, {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp(Sum_{k>=1} A048272(k)*x^k).
E.g.f.: exp(x*f'(x)), where f(x) = log(Product_{k>=1} (1 + x^k)^(1/k)).
a(n) ~ exp(2*sqrt(n*log(2)) - 1/4 - n) * n^(n - 1/4) * log(2)^(1/4) / sqrt(2). - Vaclav Kotesovec, Sep 07 2018

A338870 Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = exp(Sum_{n>0} u*d(n)*x^n/n!), where d(n) is the number of divisors of n.

Original entry on oeis.org

1, 2, 1, 2, 6, 1, 3, 20, 12, 1, 2, 55, 80, 20, 1, 4, 142, 405, 220, 30, 1, 2, 322, 1792, 1785, 490, 42, 1, 4, 779, 7224, 12152, 5810, 952, 56, 1, 3, 1608, 27323, 73920, 56532, 15498, 1680, 72, 1, 4, 3894, 99690, 414815, 482160, 204204, 35910, 2760, 90, 1
Offset: 1

Views

Author

Seiichi Manyama, Nov 13 2020

Keywords

Comments

Also the Bell transform of A000005.

Examples

			exp(Sum_{n>0} u*d(n)*x^n/n!) = 1 + u*x + (2*u+u^2)*x^2/2! + (2*u+6*u^2+u^3)*x^3/3! + ... .
Triangle begins:
  1;
  2,   1;
  2,   6,    1;
  3,  20,   12,     1;
  2,  55,   80,    20,    1;
  4, 142,  405,   220,   30,   1;
  2, 322, 1792,  1785,  490,  42,  1;
  4, 779, 7224, 12152, 5810, 952, 56, 1;
  ...
		

Crossrefs

Column k=1..2 give A000005, A328681(n-1).
Row sums give A295739.

Programs

  • Mathematica
    T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * DivisorSigma[0, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
  • PARI
    a(n) = if(n<1, 0, numdiv(n));
    T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))

Formula

T(n; u) = Sum_{k=1..n} T(n,k)*u^k is given by T(n; u) = u * Sum_{k=1..n} binomial(n-1,k-1)*d(k)*T(n-k; u), T(0; u) = 1.
T(n,k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} d(i_j)/(i_j)!.

A352694 Expansion of e.g.f. exp(Sum_{k>=1} sigma_2(k) * x^k/k!).

Original entry on oeis.org

1, 1, 6, 26, 167, 1157, 9372, 82742, 806872, 8487255, 96086764, 1159845766, 14866684968, 201266031865, 2867695938970, 42849364911878, 669517721182731, 10910196881874549, 184997231064875867, 3257297876661453487, 59443905364431491367, 1122496527274459462803
Offset: 0

Views

Author

Seiichi Manyama, Mar 29 2022

Keywords

Comments

Exponential transform of A001157.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, 2)*x^k/k!))))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, sigma(k, 2)*binomial(n-1, k-1)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} sigma_2(k) * binomial(n-1,k-1) * a(n-k).

A322513 Expansion of e.g.f. log(1 + Sum_{k>=1} d(k) * x^k / k!), where d(k) = number of divisors of k (A000005).

Original entry on oeis.org

0, 1, 1, -2, 1, 11, -48, -6, 1241, -6431, -15320, 452970, -2317212, -17584137, 372119776, -1552313624, -31732274313, 565880016193, -1217992446564, -90197542736656, 1400682677566587, 1990004001731140, -384348195167184028, 5109122826021406702
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2019

Keywords

Comments

Logarithmic transform of A000005.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, (b-> b(n)-add(a(j)
         *binomial(n, j)*j*b(n-j), j=1..n-1)/n)(numtheory[tau]))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 06 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + Sum[DivisorSigma[0, k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = DivisorSigma[0, n] - Sum[Binomial[n, k] DivisorSigma[0, n - k] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]

A352843 Expansion of e.g.f. exp(Sum_{k>=1} sigma_k(k) * x^k/k!).

Original entry on oeis.org

1, 1, 6, 44, 491, 6597, 110652, 2144606, 47988524, 1206275925, 33777572464, 1040200674416, 34967153135940, 1273241146218823, 49928549099500206, 2097300313258417056, 93953420539864844743, 4470694981375022862697, 225184078001798318202935
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2022

Keywords

Comments

Exponential transform of A023887.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(Sum[DivisorSigma[k, k]*x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, k)*x^k/k!))))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, sigma(k, k)*binomial(n-1, k-1)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} sigma_k(k) * binomial(n-1,k-1) * a(n-k).
Showing 1-8 of 8 results.