A295739
Expansion of e.g.f. exp(Sum_{k>=1} d(k)*x^k/k!), where d(k) is the number of divisors of k (A000005).
Original entry on oeis.org
1, 1, 3, 9, 36, 158, 802, 4434, 26978, 176637, 1243528, 9316519, 74065506, 621187700, 5480130494, 50662481722, 489552042241, 4931215686119, 51668848043427, 561981734692781, 6333882472789914, 73850048237680936, 889461218944314524, 11051067390893340510
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..553
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
-
a:=series(exp(add(tau(k)*x^k/k!,k=1..100)),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
-
nmax = 23; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] DivisorSigma[0, k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
A294361
E.g.f.: exp(Sum_{n>=1} sigma(n) * x^n).
Original entry on oeis.org
1, 1, 7, 43, 409, 3841, 50431, 648187, 10347793, 170363809, 3200390551, 62855417131, 1371594161257, 31147757782753, 768384638386639, 19814802390611131, 545309251861956001, 15661899520801953217, 475833949719419469223, 15042718034104688144299
Offset: 0
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n):
A294363 (k=0), this sequence (k=1),
A294362 (k=2).
-
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k)*x^k))))
A294362
E.g.f.: exp(Sum_{n>=1} sigma_2(n) * x^n).
Original entry on oeis.org
1, 1, 11, 91, 1105, 13841, 230731, 3955771, 80483201, 1738065025, 41800101931, 1070731623611, 29804263624081, 878224530964561, 27672361220570795, 919409968480087771, 32304618825218432641, 1191168445737728717441, 46119903359374012564171
Offset: 0
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n):
A294363 (k=0),
A294361 (k=1), this sequence (k=2).
-
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k, 2)*x^k))))
A294402
E.g.f.: exp(-Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.
Original entry on oeis.org
1, -1, -3, -1, 1, 279, 301, 12263, 5601, -431281, -2140739, -77720721, -1755429983, -12569445721, 85768062381, -4458503862121, 43351731658561, 546719071653663, 31735514726673661, 291860504886837599, 5860390638855992001, 208620917963122666679
Offset: 0
E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0),
A294403 (k=1),
A294404 (k=2).
A294296
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} sigma_k(j) * x^j).
Original entry on oeis.org
1, 1, 1, 1, 1, 5, 1, 1, 7, 25, 1, 1, 11, 43, 193, 1, 1, 19, 91, 409, 1481, 1, 1, 35, 223, 1105, 3841, 16021, 1, 1, 67, 595, 3505, 13841, 50431, 167665, 1, 1, 131, 1663, 12193, 60841, 230731, 648187, 2220065, 1, 1, 259, 4771, 44689, 297761, 1340851, 3955771
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
5, 7, 11, 19, 35, ...
25, 43, 91, 223, 595, ...
193, 409, 1105, 3505, 12193, ...
1481, 3841, 13841, 60841, 297761, ...
A295794
Expansion of e.g.f. Product_{k>=1} exp(x^k/(1 + x^k)).
Original entry on oeis.org
1, 1, 1, 13, 25, 241, 2761, 14701, 153553, 1903105, 27877681, 263555821, 4788201001, 65083782193, 1040877257785, 24098794612621, 373918687272481, 7393663746307201, 164894196647876833, 3504497611085823565, 81863829346282866361, 2257321249626793901041, 49755091945025205954601
Offset: 0
-
a:=series(mul(exp(x^k/(1+x^k)),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
-
nmax = 22; CoefficientList[Series[Product[Exp[x^k/(1 + x^k)], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[x D[Log[Product[(1 + x^k)^(1/k), {k, 1, nmax}]], x]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[-k Sum[(-1)^d, {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 22}]
A318811
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k), where phi is the Euler totient function A000010.
Original entry on oeis.org
1, 1, 3, 19, 121, 1161, 9931, 124363, 1542129, 21594961, 335083411, 5712781251, 104044684393, 2036445474649, 42781075481691, 943820382272251, 22433542236603361, 556276331238284193, 14612462927067954979, 401110580118493111411, 11553483337639043003481
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, eulerphi(k)*x^k)))) \\ Seiichi Manyama, Apr 07 2022
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 07 2022
A352842
Expansion of e.g.f. exp(Sum_{k>=1} sigma_k(k) * x^k).
Original entry on oeis.org
1, 1, 11, 199, 7585, 427961, 37901851, 4526311231, 729098029409, 149311985624785, 38243144308952971, 11913301283967428951, 4445712423354285230401, 1954806416110914007773769, 1000799932457357582959443035, 589931632494798210345741193231
Offset: 0
-
nmax = 20; CoefficientList[Series[E^(Sum[DivisorSigma[k, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, k)*x^k))))
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sigma(k, k)*a(n-k)/(n-k)!));
A338864
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} ( exp(x^j/(1 - x^j)) )^u.
Original entry on oeis.org
1, 4, 1, 12, 12, 1, 72, 96, 24, 1, 240, 840, 360, 40, 1, 2880, 7200, 4920, 960, 60, 1, 10080, 70560, 65520, 19320, 2100, 84, 1, 161280, 745920, 887040, 362880, 58800, 4032, 112, 1, 1088640, 7983360, 12640320, 6652800, 1481760, 150192, 7056, 144, 1
Offset: 1
exp(Sum_{n>0} u*d(n)*x^n) = 1 + u*x + (4*u+u^2)*x^2/2! + (12*u+12*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
4, 1;
12, 12, 1;
72, 96, 24, 1;
240, 840, 360, 40, 1;
2880, 7200, 4920, 960, 60, 1;
10080, 70560, 65520, 19320, 2100, 84, 1;
161280, 745920, 887040, 362880, 58800, 4032, 112, 1;
...
-
T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * j! * DivisorSigma[0, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
-
{T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, exp(x^j/(1-x^j+x*O(x^n)))^u), n), k)}
-
a(n) = if(n<1, 0, n!*numdiv(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
A322513
Expansion of e.g.f. log(1 + Sum_{k>=1} d(k) * x^k / k!), where d(k) = number of divisors of k (A000005).
Original entry on oeis.org
0, 1, 1, -2, 1, 11, -48, -6, 1241, -6431, -15320, 452970, -2317212, -17584137, 372119776, -1552313624, -31732274313, 565880016193, -1217992446564, -90197542736656, 1400682677566587, 1990004001731140, -384348195167184028, 5109122826021406702
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 0, (b-> b(n)-add(a(j)
*binomial(n, j)*j*b(n-j), j=1..n-1)/n)(numtheory[tau]))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 06 2019
-
nmax = 23; CoefficientList[Series[Log[1 + Sum[DivisorSigma[0, k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = DivisorSigma[0, n] - Sum[Binomial[n, k] DivisorSigma[0, n - k] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]
Showing 1-10 of 11 results.
Comments