cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A294363 E.g.f.: exp(Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.

Original entry on oeis.org

1, 1, 5, 25, 193, 1481, 16021, 167665, 2220065, 30004273, 468585541, 7560838121, 138355144225, 2589359765305, 53501800316693, 1146089983207681, 26457132132638401, 632544682981967585, 16171678558995779845, 426926324177655018553, 11938570457328874969601
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 13 2017: (Start)
The terms of the sequence appear to be of the form 4*m + 1.
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(5*n+2) == 0 (mod 5); a(5*n+3) == 0 (mod 5); a(13*n+9) == 0 (mod 13). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0), A294361 (k=1), A294362 (k=2).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 05 2018 *)
    a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 06 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, numdiv(k)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000005(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
Conjecture: log(a(n)/n!) ~ sqrt(2*n*log(n)). - Vaclav Kotesovec, Sep 07 2018

A294362 E.g.f.: exp(Sum_{n>=1} sigma_2(n) * x^n).

Original entry on oeis.org

1, 1, 11, 91, 1105, 13841, 230731, 3955771, 80483201, 1738065025, 41800101931, 1070731623611, 29804263624081, 878224530964561, 27672361220570795, 919409968480087771, 32304618825218432641, 1191168445737728717441, 46119903359374012564171
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 14 2017: (Start)
It appears that the sequence taken modulo 10 is periodic with period (1, 1, 1, 1, 5) of length 5.
More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(5*n+4) = 0 (mod 5); a(7*n+3) == 0 (mod 7); a(11*n+2) == 0 (mod 11); a(13*n+3) == 0 (mod 13); a(17*n+4) == 0 (mod 17); a(19*n+12) == 0 (mod 19). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): A294363 (k=0), A294361 (k=1), this sequence (k=2).
Cf. A001157.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k, 2)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A001157(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(k^2*x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
a(n) ~ (3*Zeta(3))^(1/8) * exp(2^(9/4) * Zeta(3)^(1/4) * n^(3/4) / 3^(3/4) - n^(1/4) / (2^(9/4) * 3^(5/4) * Zeta(3)^(1/4)) - n) * n^(n - 1/8) / 2^(7/8). - Vaclav Kotesovec, Sep 04 2018

A294403 E.g.f.: exp(-Sum_{n>=1} sigma(n) * x^n).

Original entry on oeis.org

1, -1, -5, -7, 1, 839, 4171, 54305, 102817, -4303441, -74521349, -1595325271, -20768141855, -222701825737, 1485790534411, 65580347824529, 2880129557707201, 67631429234674655, 1543424936566399867, 23542870556917468889, 119940955037901088321
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2017

Keywords

Crossrefs

E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n): A294402 (k=0), this sequence (k=1), A294404 (k=2).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(-sum(k=1, N, sigma(k)*x^k))))

Formula

a(0) = 1 and a(n) = (-1) * (n-1)! * Sum_{k=1..n} k*A000203(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} (1 - x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} gcd(k,j)^2. - Ilya Gutkovskiy, Aug 17 2021

A294296 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} sigma_k(j) * x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 7, 25, 1, 1, 11, 43, 193, 1, 1, 19, 91, 409, 1481, 1, 1, 35, 223, 1105, 3841, 16021, 1, 1, 67, 595, 3505, 13841, 50431, 167665, 1, 1, 131, 1663, 12193, 60841, 230731, 648187, 2220065, 1, 1, 259, 4771, 44689, 297761, 1340851, 3955771
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2017

Keywords

Examples

			Square array A(n,k) begins:
      1,    1,     1,     1,      1, ...
      1,    1,     1,     1,      1, ...
      5,    7,    11,    19,     35, ...
     25,   43,    91,   223,    595, ...
    193,  409,  1105,  3505,  12193, ...
   1481, 3841, 13841, 60841, 297761, ...
		

Crossrefs

Columns k=0..2 give A294363, A294361, A294362.
Rows n=0-1 give A000012.
Main diagonal gives A294388.
Cf. A144048.

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*sigma_k(j)*A(n-j,k)/(n-j)! for n > 0.

A318811 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 3, 19, 121, 1161, 9931, 124363, 1542129, 21594961, 335083411, 5712781251, 104044684393, 2036445474649, 42781075481691, 943820382272251, 22433542236603361, 556276331238284193, 14612462927067954979, 401110580118493111411, 11553483337639043003481
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, eulerphi(k)*x^k)))) \\ Seiichi Manyama, Apr 07 2022
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 07 2022

Formula

a(n) ~ 2^(1/3) * exp(1/6 + 3^(4/3) * n^(2/3) / (2^(1/3) * Pi^(2/3)) - n) * n^(n - 1/6) / (3*Pi)^(1/3).
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * phi(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 07 2022

A352842 Expansion of e.g.f. exp(Sum_{k>=1} sigma_k(k) * x^k).

Original entry on oeis.org

1, 1, 11, 199, 7585, 427961, 37901851, 4526311231, 729098029409, 149311985624785, 38243144308952971, 11913301283967428951, 4445712423354285230401, 1954806416110914007773769, 1000799932457357582959443035, 589931632494798210345741193231
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(Sum[DivisorSigma[k, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, k)*x^k))))
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sigma(k, k)*a(n-k)/(n-k)!));

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * sigma_k(k) * a(n-k)/(n-k)!.
a(n) ~ n! * n^n. - Vaclav Kotesovec, Apr 15 2022

A338865 Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} ( exp(j*x^j/(1 - x^j)) )^u.

Original entry on oeis.org

1, 6, 1, 24, 18, 1, 168, 204, 36, 1, 720, 2280, 780, 60, 1, 8640, 25200, 14400, 2100, 90, 1, 40320, 292320, 252000, 58800, 4620, 126, 1, 604800, 3729600, 4334400, 1486800, 183120, 8904, 168, 1, 4717440, 46811520, 76265280, 35743680, 6335280, 474768, 15624, 216, 1
Offset: 1

Views

Author

Seiichi Manyama, Nov 13 2020

Keywords

Examples

			exp(Sum_{n>0} u*sigma(n)*x^n) = 1 + u*x + (6*u+u^2)*x^2/2! + (24*u+18*u^2+u^3)*x^3/3! + ... .
Triangle begins:
       1;
       6,       1;
      24,      18,       1;
     168,     204,      36,       1;
     720,    2280,     780,      60,      1;
    8640,   25200,   14400,    2100,     90,    1;
   40320,  292320,  252000,   58800,   4620,  126,   1;
  604800, 3729600, 4334400, 1486800, 183120, 8904, 168, 1;
  ...
		

Crossrefs

Column k=1..2 give n! * sigma(n), (n!/2) * A000385(n-1).
Rows sum give A294361.
Cf. A000203 (sigma(n)), A008298, A338864, A338871.

Programs

  • Mathematica
    T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * j! * DivisorSigma[1, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
  • PARI
    {T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, exp(j*x^j/(1-x^j+x*O(x^n)))^u), n), k)}
    
  • PARI
    a(n) = if(n<1, 0, n!*sigma(n));
    T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))

Formula

E.g.f.: exp(Sum_{n>0} u*sigma(n)*x^n).
T(n; u) = Sum_{k=1..n} T(n,k)*u^k is given by T(n; u) = u * (n-1)! * Sum_{k=1..n} k*sigma(k)*T(n-k; u)/(n-k)!, T(0; u) = 1.
T(n,k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} sigma(i_j).
Showing 1-7 of 7 results.