A294363
E.g.f.: exp(Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.
Original entry on oeis.org
1, 1, 5, 25, 193, 1481, 16021, 167665, 2220065, 30004273, 468585541, 7560838121, 138355144225, 2589359765305, 53501800316693, 1146089983207681, 26457132132638401, 632544682981967585, 16171678558995779845, 426926324177655018553, 11938570457328874969601
Offset: 0
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0),
A294361 (k=1),
A294362 (k=2).
-
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 05 2018 *)
a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 06 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, numdiv(k)*x^k))))
A294362
E.g.f.: exp(Sum_{n>=1} sigma_2(n) * x^n).
Original entry on oeis.org
1, 1, 11, 91, 1105, 13841, 230731, 3955771, 80483201, 1738065025, 41800101931, 1070731623611, 29804263624081, 878224530964561, 27672361220570795, 919409968480087771, 32304618825218432641, 1191168445737728717441, 46119903359374012564171
Offset: 0
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n):
A294363 (k=0),
A294361 (k=1), this sequence (k=2).
-
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k, 2)*x^k))))
A294403
E.g.f.: exp(-Sum_{n>=1} sigma(n) * x^n).
Original entry on oeis.org
1, -1, -5, -7, 1, 839, 4171, 54305, 102817, -4303441, -74521349, -1595325271, -20768141855, -222701825737, 1485790534411, 65580347824529, 2880129557707201, 67631429234674655, 1543424936566399867, 23542870556917468889, 119940955037901088321
Offset: 0
E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n):
A294402 (k=0), this sequence (k=1),
A294404 (k=2).
A294296
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} sigma_k(j) * x^j).
Original entry on oeis.org
1, 1, 1, 1, 1, 5, 1, 1, 7, 25, 1, 1, 11, 43, 193, 1, 1, 19, 91, 409, 1481, 1, 1, 35, 223, 1105, 3841, 16021, 1, 1, 67, 595, 3505, 13841, 50431, 167665, 1, 1, 131, 1663, 12193, 60841, 230731, 648187, 2220065, 1, 1, 259, 4771, 44689, 297761, 1340851, 3955771
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
5, 7, 11, 19, 35, ...
25, 43, 91, 223, 595, ...
193, 409, 1105, 3505, 12193, ...
1481, 3841, 13841, 60841, 297761, ...
A318811
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k), where phi is the Euler totient function A000010.
Original entry on oeis.org
1, 1, 3, 19, 121, 1161, 9931, 124363, 1542129, 21594961, 335083411, 5712781251, 104044684393, 2036445474649, 42781075481691, 943820382272251, 22433542236603361, 556276331238284193, 14612462927067954979, 401110580118493111411, 11553483337639043003481
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, eulerphi(k)*x^k)))) \\ Seiichi Manyama, Apr 07 2022
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 07 2022
A352842
Expansion of e.g.f. exp(Sum_{k>=1} sigma_k(k) * x^k).
Original entry on oeis.org
1, 1, 11, 199, 7585, 427961, 37901851, 4526311231, 729098029409, 149311985624785, 38243144308952971, 11913301283967428951, 4445712423354285230401, 1954806416110914007773769, 1000799932457357582959443035, 589931632494798210345741193231
Offset: 0
-
nmax = 20; CoefficientList[Series[E^(Sum[DivisorSigma[k, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, k)*x^k))))
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sigma(k, k)*a(n-k)/(n-k)!));
A338865
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} ( exp(j*x^j/(1 - x^j)) )^u.
Original entry on oeis.org
1, 6, 1, 24, 18, 1, 168, 204, 36, 1, 720, 2280, 780, 60, 1, 8640, 25200, 14400, 2100, 90, 1, 40320, 292320, 252000, 58800, 4620, 126, 1, 604800, 3729600, 4334400, 1486800, 183120, 8904, 168, 1, 4717440, 46811520, 76265280, 35743680, 6335280, 474768, 15624, 216, 1
Offset: 1
exp(Sum_{n>0} u*sigma(n)*x^n) = 1 + u*x + (6*u+u^2)*x^2/2! + (24*u+18*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
6, 1;
24, 18, 1;
168, 204, 36, 1;
720, 2280, 780, 60, 1;
8640, 25200, 14400, 2100, 90, 1;
40320, 292320, 252000, 58800, 4620, 126, 1;
604800, 3729600, 4334400, 1486800, 183120, 8904, 168, 1;
...
Column k=1..2 give n! * sigma(n), (n!/2) *
A000385(n-1).
-
T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * j! * DivisorSigma[1, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
-
{T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, exp(j*x^j/(1-x^j+x*O(x^n)))^u), n), k)}
-
a(n) = if(n<1, 0, n!*sigma(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
Showing 1-7 of 7 results.
Comments