cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A294363 E.g.f.: exp(Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.

Original entry on oeis.org

1, 1, 5, 25, 193, 1481, 16021, 167665, 2220065, 30004273, 468585541, 7560838121, 138355144225, 2589359765305, 53501800316693, 1146089983207681, 26457132132638401, 632544682981967585, 16171678558995779845, 426926324177655018553, 11938570457328874969601
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 13 2017: (Start)
The terms of the sequence appear to be of the form 4*m + 1.
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(5*n+2) == 0 (mod 5); a(5*n+3) == 0 (mod 5); a(13*n+9) == 0 (mod 13). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0), A294361 (k=1), A294362 (k=2).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 05 2018 *)
    a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 06 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, numdiv(k)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000005(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
Conjecture: log(a(n)/n!) ~ sqrt(2*n*log(n)). - Vaclav Kotesovec, Sep 07 2018

A328259 a(n) = n * sigma_2(n).

Original entry on oeis.org

1, 10, 30, 84, 130, 300, 350, 680, 819, 1300, 1342, 2520, 2210, 3500, 3900, 5456, 4930, 8190, 6878, 10920, 10500, 13420, 12190, 20400, 16275, 22100, 22140, 29400, 24418, 39000, 29822, 43680, 40260, 49300, 45500, 68796, 50690, 68780, 66300, 88400, 68962, 105000, 79550, 112728, 106470
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 09 2019

Keywords

Comments

Moebius transform of A027847.

Crossrefs

Programs

  • Mathematica
    Table[n DivisorSigma[2, n], {n, 1, 45}]
    nmax = 45; CoefficientList[Series[Sum[k^3 x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = n*sigma(n, 2); \\ Michel Marcus, Dec 02 2020

Formula

G.f.: Sum_{k>=1} k^3 * x^k / (1 - x^k)^2.
G.f.: Sum_{k>=1} k * x^k * (1 + 4 * x^k + x^(2*k)) / (1 - x^k)^4.
Dirichlet g.f.: zeta(s - 1) * zeta(s - 3).
Sum_{k=1..n} a(k) ~ zeta(3) * n^4 / 4. - Vaclav Kotesovec, Oct 09 2019
Multiplicative with a(p^e) = (p^(3*e+2) - p^e)/(p^2 - 1). - Amiram Eldar, Dec 02 2020
G.f.: Sum_{n >= 1} q^(n^2)*( n^4 - (2*n^4 - 4*n^3 - 3*n^2 - n)*q^n - (8*n^3 - 4*n)*q^(2*n) + (2*n^4 + 4*n^3 - 3*n^2 + n)*q^(3*n) - n^4*q^(4*n) )/(1 - q^n)^4. Apply the operator x*d/dx twice, followed by the operator q*d/dq once, to equation 5 in Arndt and then set x = 1. - Peter Bala, Jan 21 2021
a(n) = Sum_{k = 1..n} sigma_3( gcd(k, n) ) = Sum_{d divides n} sigma_3(d) * phi(n/d). - Peter Bala, Jan 19 2024
a(n) = Sum_{1 <= i, j, k <= n} sigma_1( gcd(i, j, k, n) ) = Sum_{d divides n} sigma_1(d) * J_3(n/d), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 22 2024

A294361 E.g.f.: exp(Sum_{n>=1} sigma(n) * x^n).

Original entry on oeis.org

1, 1, 7, 43, 409, 3841, 50431, 648187, 10347793, 170363809, 3200390551, 62855417131, 1371594161257, 31147757782753, 768384638386639, 19814802390611131, 545309251861956001, 15661899520801953217, 475833949719419469223, 15042718034104688144299
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 14 2017: (Start)
The terms of the sequence appear to be of the form 6*m + 1.
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(7*n+2) == 0 (mod 7); a(11*n+9) == 0 (mod 11); a(13*n+11) == 0 (mod 13). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): A294363 (k=0), this sequence (k=1), A294362 (k=2).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000203(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(k*x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
a(n) ~ Pi^(1/3) * exp((3*Pi)^(2/3) * n^(2/3)/2 - 3^(1/3) * n^(1/3) / (2*Pi^(2/3)) + 1/24 - 1/(8*Pi^2) - n) * n^(n - 1/6) / 3^(2/3). - Vaclav Kotesovec, Sep 04 2018

A294404 E.g.f.: exp(-Sum_{n>=1} sigma_2(n) * x^n).

Original entry on oeis.org

1, -1, -9, -31, -23, 3399, 41311, 473129, 1284081, -79051537, -2447228249, -52444297071, -712806368999, -2221410364681, 331443685309647, 15068893004257049, 460836352976093281, 10298306504802529119, 122928784866003823831, -3359583359629857247807
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2017

Keywords

Crossrefs

E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n): A294402 (k=0), A294403 (k=1), this sequence (k=2).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(-sum(k=1, N, sigma(k, 2)*x^k))))

Formula

a(0) = 1 and a(n) = (-1) * (n-1)! * Sum_{k=1..n} k*A001157(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} (1 - x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} gcd(k,j)^3. - Ilya Gutkovskiy, Aug 17 2021

A294296 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} sigma_k(j) * x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 7, 25, 1, 1, 11, 43, 193, 1, 1, 19, 91, 409, 1481, 1, 1, 35, 223, 1105, 3841, 16021, 1, 1, 67, 595, 3505, 13841, 50431, 167665, 1, 1, 131, 1663, 12193, 60841, 230731, 648187, 2220065, 1, 1, 259, 4771, 44689, 297761, 1340851, 3955771
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2017

Keywords

Examples

			Square array A(n,k) begins:
      1,    1,     1,     1,      1, ...
      1,    1,     1,     1,      1, ...
      5,    7,    11,    19,     35, ...
     25,   43,    91,   223,    595, ...
    193,  409,  1105,  3505,  12193, ...
   1481, 3841, 13841, 60841, 297761, ...
		

Crossrefs

Columns k=0..2 give A294363, A294361, A294362.
Rows n=0-1 give A000012.
Main diagonal gives A294388.
Cf. A144048.

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*sigma_k(j)*A(n-j,k)/(n-j)! for n > 0.

A352694 Expansion of e.g.f. exp(Sum_{k>=1} sigma_2(k) * x^k/k!).

Original entry on oeis.org

1, 1, 6, 26, 167, 1157, 9372, 82742, 806872, 8487255, 96086764, 1159845766, 14866684968, 201266031865, 2867695938970, 42849364911878, 669517721182731, 10910196881874549, 184997231064875867, 3257297876661453487, 59443905364431491367, 1122496527274459462803
Offset: 0

Views

Author

Seiichi Manyama, Mar 29 2022

Keywords

Comments

Exponential transform of A001157.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, 2)*x^k/k!))))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, sigma(k, 2)*binomial(n-1, k-1)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} sigma_2(k) * binomial(n-1,k-1) * a(n-k).

A352842 Expansion of e.g.f. exp(Sum_{k>=1} sigma_k(k) * x^k).

Original entry on oeis.org

1, 1, 11, 199, 7585, 427961, 37901851, 4526311231, 729098029409, 149311985624785, 38243144308952971, 11913301283967428951, 4445712423354285230401, 1954806416110914007773769, 1000799932457357582959443035, 589931632494798210345741193231
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(Sum[DivisorSigma[k, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, k)*x^k))))
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sigma(k, k)*a(n-k)/(n-k)!));

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * sigma_k(k) * a(n-k)/(n-k)!.
a(n) ~ n! * n^n. - Vaclav Kotesovec, Apr 15 2022
Showing 1-7 of 7 results.