A294363
E.g.f.: exp(Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.
Original entry on oeis.org
1, 1, 5, 25, 193, 1481, 16021, 167665, 2220065, 30004273, 468585541, 7560838121, 138355144225, 2589359765305, 53501800316693, 1146089983207681, 26457132132638401, 632544682981967585, 16171678558995779845, 426926324177655018553, 11938570457328874969601
Offset: 0
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0),
A294361 (k=1),
A294362 (k=2).
-
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 05 2018 *)
a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 06 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, numdiv(k)*x^k))))
A328259
a(n) = n * sigma_2(n).
Original entry on oeis.org
1, 10, 30, 84, 130, 300, 350, 680, 819, 1300, 1342, 2520, 2210, 3500, 3900, 5456, 4930, 8190, 6878, 10920, 10500, 13420, 12190, 20400, 16275, 22100, 22140, 29400, 24418, 39000, 29822, 43680, 40260, 49300, 45500, 68796, 50690, 68780, 66300, 88400, 68962, 105000, 79550, 112728, 106470
Offset: 1
-
Table[n DivisorSigma[2, n], {n, 1, 45}]
nmax = 45; CoefficientList[Series[Sum[k^3 x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
a(n) = n*sigma(n, 2); \\ Michel Marcus, Dec 02 2020
A294361
E.g.f.: exp(Sum_{n>=1} sigma(n) * x^n).
Original entry on oeis.org
1, 1, 7, 43, 409, 3841, 50431, 648187, 10347793, 170363809, 3200390551, 62855417131, 1371594161257, 31147757782753, 768384638386639, 19814802390611131, 545309251861956001, 15661899520801953217, 475833949719419469223, 15042718034104688144299
Offset: 0
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n):
A294363 (k=0), this sequence (k=1),
A294362 (k=2).
-
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k)*x^k))))
A294404
E.g.f.: exp(-Sum_{n>=1} sigma_2(n) * x^n).
Original entry on oeis.org
1, -1, -9, -31, -23, 3399, 41311, 473129, 1284081, -79051537, -2447228249, -52444297071, -712806368999, -2221410364681, 331443685309647, 15068893004257049, 460836352976093281, 10298306504802529119, 122928784866003823831, -3359583359629857247807
Offset: 0
E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n):
A294402 (k=0),
A294403 (k=1), this sequence (k=2).
A294296
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} sigma_k(j) * x^j).
Original entry on oeis.org
1, 1, 1, 1, 1, 5, 1, 1, 7, 25, 1, 1, 11, 43, 193, 1, 1, 19, 91, 409, 1481, 1, 1, 35, 223, 1105, 3841, 16021, 1, 1, 67, 595, 3505, 13841, 50431, 167665, 1, 1, 131, 1663, 12193, 60841, 230731, 648187, 2220065, 1, 1, 259, 4771, 44689, 297761, 1340851, 3955771
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
5, 7, 11, 19, 35, ...
25, 43, 91, 223, 595, ...
193, 409, 1105, 3505, 12193, ...
1481, 3841, 13841, 60841, 297761, ...
A352694
Expansion of e.g.f. exp(Sum_{k>=1} sigma_2(k) * x^k/k!).
Original entry on oeis.org
1, 1, 6, 26, 167, 1157, 9372, 82742, 806872, 8487255, 96086764, 1159845766, 14866684968, 201266031865, 2867695938970, 42849364911878, 669517721182731, 10910196881874549, 184997231064875867, 3257297876661453487, 59443905364431491367, 1122496527274459462803
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, 2)*x^k/k!))))
-
a(n) = if(n==0, 1, sum(k=1, n, sigma(k, 2)*binomial(n-1, k-1)*a(n-k)));
A352842
Expansion of e.g.f. exp(Sum_{k>=1} sigma_k(k) * x^k).
Original entry on oeis.org
1, 1, 11, 199, 7585, 427961, 37901851, 4526311231, 729098029409, 149311985624785, 38243144308952971, 11913301283967428951, 4445712423354285230401, 1954806416110914007773769, 1000799932457357582959443035, 589931632494798210345741193231
Offset: 0
-
nmax = 20; CoefficientList[Series[E^(Sum[DivisorSigma[k, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, k)*x^k))))
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sigma(k, k)*a(n-k)/(n-k)!));
Showing 1-7 of 7 results.
Comments