A028397 Start at n and iterate the map in A006368; a(n) is the smallest number in the trajectory.
0, 1, 2, 2, 4, 4, 4, 4, 8, 4, 8, 8, 12, 8, 14, 8, 16, 8, 18, 14, 20, 16, 14, 8, 24, 14, 14, 20, 14, 14, 30, 8, 32, 14, 32, 14, 36, 14, 32, 14, 40, 8, 14, 32, 44, 32, 46, 14, 48, 14, 50, 32, 50, 40, 46, 8, 56, 32, 14, 44, 60, 46, 44, 14, 64, 14, 44, 50, 8, 50, 44, 40, 72, 8, 44, 56
Offset: 0
Examples
Sample iteration: 7->5->4->6->9->7 so a(7)=4. Sample iteration: 12->18->27->20->30->45->34->51->... so a(12)=12.
Links
Programs
-
Mathematica
Table[Min[NestList[If[EvenQ[#],(3#)/2,Floor[(3#+2)/4]]&,n,100]],{n,0,80}] (* Harvey P. Dale, May 02 2012 *)
-
PARI
a(n)=local(m); if(n<=0,0,m=n; while((m!=n=(3*n+n%2)\(2+n%2*2))&n<10^99,m=min(m,n)); m)
-
Perl
$|=1; for($n=1;; ++$n){ $m=$n; $d{$m}=$n, $m=f($m) while !$d{$m};
-
Perl
if ($m<$n){ ($c,$m)=($d{$m},$n); $d{$m}=$c, $m=f($m) while $m >= $n }
-
Perl
print"$d{$n}," } sub f { $[0]%2 ? int((3*$[0]+1)/4) : 3*$_[0]/2 }
Extensions
More terms from Hugo van der Sanden