cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006368 The "amusical permutation" of the nonnegative numbers: a(2n)=3n, a(4n+1)=3n+1, a(4n-1)=3n-1.

Original entry on oeis.org

0, 1, 3, 2, 6, 4, 9, 5, 12, 7, 15, 8, 18, 10, 21, 11, 24, 13, 27, 14, 30, 16, 33, 17, 36, 19, 39, 20, 42, 22, 45, 23, 48, 25, 51, 26, 54, 28, 57, 29, 60, 31, 63, 32, 66, 34, 69, 35, 72, 37, 75, 38, 78, 40, 81, 41, 84, 43, 87, 44, 90, 46, 93, 47, 96, 49, 99, 50, 102, 52, 105, 53
Offset: 0

Views

Author

Keywords

Comments

A permutation of the nonnegative integers.
There is a famous open question concerning the closed trajectories under this map - see A217218, A028393, A028394, and Conway (2013).
This is lodumo_3 of A131743. - Philippe Deléham, Oct 24 2011
Multiples of 3 interspersed with numbers other than multiples of 3. - Harvey P. Dale, Dec 16 2011
For n>0: a(2n+1) is the smallest number missing from {a(0),...,a(2n-1)} and a(2n) = a(2n-1) + a(2n+1). - Bob Selcoe, May 24 2017
From Wolfdieter Lang, Sep 21 2021: (Start)
The permutation P of positive natural numbers with P(n) = a(n-1) + 1, for n >= 1, is the inverse of the permutation given in A265667, and it maps the index n of A178414 to the index of A047529: A178414(n) = A047529(P(n)).
Thus each number {1, 3, 7} (mod 8) appears in the first column A178414 of the array A178415 just once. For the formulas see below. (End)
Starting at n = 1, the sequence equals the smallest unused positive number such that a(n)-a(n-1) does not appear as a term in the current sequence. - Scott R. Shannon, Dec 20 2023

Examples

			9 is odd so a(9) = round(3*9/4) = round(7-1/4) = 7.
		

References

  • J. H. Conway, Unpredictable iterations, in Proc. Number Theory Conf., Boulder, CO, 1972, pp. 49-52.
  • R. K. Guy, Unsolved Problems in Number Theory, E17.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 5.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006368 n | u' == 0   = 3 * u
              | otherwise = 3 * v + (v' + 1) `div` 2
              where (u,u') = divMod n 2; (v,v') = divMod n 4
    -- Reinhard Zumkeller, Apr 18 2012
    
  • Magma
    [n mod 2 eq 1 select Round(3*n/4) else 3*n/2: n in [0..80]]; // G. C. Greubel, Jan 03 2024
  • Maple
    f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi; # N. J. A. Sloane, Jan 21 2011
    A006368:=(1+3*z+z**2+3*z**3+z**4)/(1+z**2)/(z-1)**2/(1+z)**2; # [Conjectured (correctly, except for the offset) by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    Table[If[EvenQ[n],(3n)/2,Floor[(3n+2)/4]],{n,0,80}] (* or *) LinearRecurrence[ {0,1,0,1,0,-1},{0,1,3,2,6,4},80] (* Harvey P. Dale, Dec 16 2011 *)
  • PARI
    a(n)=(3*n+n%2)\(2+n%2*2)
    
  • PARI
    a(n)=if(n%2,round(3*n/4),3*n/2)
    
  • Python
    def a(n): return 0 if n == 0 else 3*n//2 if n%2 == 0 else (3*n+1)//4
    print([a(n) for n in range(72)]) # Michael S. Branicky, Aug 12 2021
    

Formula

If n even, then a(n) = 3*n/2, otherwise, a(n) = round(3*n/4).
G.f.: x*(1+3*x+x^2+3*x^3+x^4)/((1-x^2)*(1-x^4)). - Michael Somos, Jul 23 2002
a(n) = -a(-n).
From Reinhard Zumkeller, Nov 20 2009: (Start)
a(n) = A006369(n) - A168223(n).
A168221(n) = a(a(n)).
A168222(a(n)) = A006369(n). (End)
a(n) = a(n-2) + a(n-4) - a(n-6); a(0)=0, a(1)=1, a(2)=3, a(3)=2, a(4)=6, a(5)=4. - Harvey P. Dale, Dec 16 2011
From Wolfdieter Lang, Sep 21 2021: (Start)
Formulas for the permutation P(n) = a(n-1) + 1 mentioned above:
P(n) = n + floor(n/2) if n is odd, and n - floor(n/4) if n is even.
P(n) = (3*n-1)/2 if n is odd; P(n) = (3*n+2)/4 if n == 2 (mod 4); and P(n) = 3*n/4 if n == 0 (mod 4). (End)

Extensions

Edited by Michael Somos, Jul 23 2002
I replaced the definition with the original definition of Conway and Guy. - N. J. A. Sloane, Oct 03 2012

A006369 a(n) = 2*n/3 for n divisible by 3, otherwise a(n) = round(4*n/3). Or, equivalently, a(3*n-2) = 4*n-3, a(3*n-1) = 4*n-1, a(3*n) = 2*n.

Original entry on oeis.org

0, 1, 3, 2, 5, 7, 4, 9, 11, 6, 13, 15, 8, 17, 19, 10, 21, 23, 12, 25, 27, 14, 29, 31, 16, 33, 35, 18, 37, 39, 20, 41, 43, 22, 45, 47, 24, 49, 51, 26, 53, 55, 28, 57, 59, 30, 61, 63, 32, 65, 67, 34, 69, 71, 36, 73, 75, 38, 77, 79, 40, 81, 83, 42, 85, 87, 44, 89, 91, 46, 93, 95
Offset: 0

Views

Author

Keywords

Comments

Original name was: Nearest integer to 4n/3 unless that is an integer, when 2n/3.
This function was studied by Lothar Collatz in 1932.
Fibonacci numbers lodumo_2. - Philippe Deléham, Apr 26 2009
a(n) = A006368(n) + A168223(n); A168222(n) = a(a(n)); A168221(a(n)) = A006368(n). - Reinhard Zumkeller, Nov 20 2009
The permutation P given in A265667 is P(n) = a(n-1) + 1, for n >= 0, with a(-1) = -1. Observed by Kevin Ryde. - Wolfdieter Lang, Sep 22 2021

Examples

			G.f. = x + 3*x^2 + 2*x^3 + 5*x^4 + 7*x^5 + 4*x^6 + 9*x^7 + 11*x^8 + 6*x^9 + ...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E17.
  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 579-581.
  • K. Knopp, Infinite Sequences and Series, Dover Publications, NY, 1958, p. 77.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 31 (g(n)) and page 270 (f(n)).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006369 n | m > 0     = round (4 * fromIntegral n / 3)
              | otherwise = 2 * n' where (n',m) = divMod n 3
    -- Reinhard Zumkeller, Dec 31 2011
  • Maple
    A006369 := proc(n) if n mod 3 = 0 then 2*n/3 else round(4*n/3); fi; end;
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end; # N. J. A. Sloane, Feb 04 2011
    A006369:=(1+z**2)*(z**2+3*z+1)/(z-1)**2/(z**2+z+1)**2; # Simon Plouffe, in his 1992 dissertation
  • Mathematica
    Table[If[Divisible[n,3],(2n)/3,Floor[(4n)/3+1/2]],{n,0,80}] (* Harvey P. Dale, Nov 03 2011 *)
    Table[n + Floor[(n + 1)/3] (-1)^Mod[n + 1, 3], {n, 0, 80}] (* Bruno Berselli, Dec 10 2015 *)
  • PARI
    {a(n) = if( n%3, round(4*n / 3), 2*n / 3)}; /* Michael Somos, Oct 05 2003 */
    

Formula

From Michael Somos, Oct 05 2003: (Start)
G.f.: x * (1 + 3*x + 2*x^2 + 3*x^3 + x^4) / (1 - x^3)^2.
a(3*n) = 2*n, a(3*n + 1) = 4*n + 1, a(3*n - 1) = 4*n - 1, a(n) = -a(-n) for all n in Z. (End)
The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.
a(n) = (2 - ((2*n + 1) mod 3) mod 2) * floor((2*n + 1)/3) + (2*n + 1) mod 3 - 1. - Reinhard Zumkeller, Jan 23 2005
a(n) = lod_2(F(n)). - Philippe Deléham, Apr 26 2009
0 = 21 + a(n)*(18 + 4*a(n) - a(n+1) - 7*a(n+2)) + a(n+1)*(-a(n+2)) + a(n+2)*(-18 + 4*a(n+2)) for all n in Z. - Michael Somos, Aug 24 2014
a(n) = n + floor((n+1)/3)*(-1)^((n+1) mod 3). - Bruno Berselli, Dec 10 2015
a(n) = 2*a(n-3) - a(n-6) for n >= 6. - Werner Schulte, Mar 16 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = log(sqrt(2)+2)/sqrt(2) + (1-sqrt(2)/2)*log(2)/2. - Amiram Eldar, Sep 29 2022

Extensions

New name from Jon E. Schoenfield, Jul 28 2015

A094328 Iterate the map in A006369 starting at 4.

Original entry on oeis.org

4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6
Offset: 1

Views

Author

N. J. A. Sloane, Jun 04 2004

Keywords

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.

Crossrefs

Programs

  • Haskell
    a094328 n = a094328_list !! (n-1)
    a094328_list = iterate a006369 4  -- Reinhard Zumkeller, Dec 31 2011
    
  • Mathematica
    Table[{4, 5, 7, 9, 6}, {21}] // Flatten  (* Jean-François Alcover, Jun 10 2013 *)
    LinearRecurrence[{0, 0, 0, 0, 1},{4, 5, 7, 9, 6},105] (* Ray Chandler, Sep 03 2015 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,0,0,0]^(n-1)*[4;5;7;9;6])[1,1] \\ Charles R Greathouse IV, Oct 18 2022

Formula

The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.
Periodic with period length 5.

A180853 Trajectory of 4 under map n->A006368(n).

Original entry on oeis.org

4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2011

Keywords

Comments

The trajectory of 8 is a famous unsolved problem - see A028393.

References

  • D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16.

Crossrefs

Programs

Formula

Periodic with period of length 5.
G.f.: ( -4-6*x-9*x^2-7*x^3-5*x^4 ) / ( (x-1)*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Mar 10 2011
a(n+1) = A006368(a(n)).
a(n) = a(n-5). - Wesley Ivan Hurt, Apr 26 2021

A180864 Trajectory of 13 under map n->A006368(n).

Original entry on oeis.org

13, 10, 15, 11, 8, 12, 18, 27, 20, 30, 45, 34, 51, 38, 57, 43, 32, 48, 72, 108, 162, 243, 182, 273, 205, 154, 231, 173, 130, 195, 146, 219, 164, 246, 369, 277, 208, 312, 468, 702, 1053, 790, 1185, 889, 667, 500, 750, 1125, 844, 1266, 1899, 1424, 2136, 3204, 4806, 7209, 5407, 4055, 3041, 2281, 1711, 1283, 962
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2011

Keywords

Comments

Merges with the trajectory of 8 after four steps - see A028393.
It is a famous unsolved problem to show that this trajectory is unbounded.

References

  • D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16.

Crossrefs

Programs

  • Haskell
    a180864 n = a180864_list !! n
    a180864_list = iterate a006368 13  -- Reinhard Zumkeller, Apr 18 2012
  • Mathematica
    b[n_] := If[EvenQ[n], 3n/2, Floor[(3n+2)/4]];
    a[0] = 13; a[n_] := a[n] = b[a[n-1]];
    Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Aug 01 2018 *)
    SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {13}, 62] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

Formula

a(n+1) = A006368(a(n)).
Showing 1-5 of 5 results.