cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A094328 Iterate the map in A006369 starting at 4.

Original entry on oeis.org

4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6
Offset: 1

Views

Author

N. J. A. Sloane, Jun 04 2004

Keywords

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.

Crossrefs

Programs

  • Haskell
    a094328 n = a094328_list !! (n-1)
    a094328_list = iterate a006369 4  -- Reinhard Zumkeller, Dec 31 2011
    
  • Mathematica
    Table[{4, 5, 7, 9, 6}, {21}] // Flatten  (* Jean-François Alcover, Jun 10 2013 *)
    LinearRecurrence[{0, 0, 0, 0, 1},{4, 5, 7, 9, 6},105] (* Ray Chandler, Sep 03 2015 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,0,0,0]^(n-1)*[4;5;7;9;6])[1,1] \\ Charles R Greathouse IV, Oct 18 2022

Formula

The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.
Periodic with period length 5.

A028394 Iterate the map in A006369 starting at 8.

Original entry on oeis.org

8, 11, 15, 10, 13, 17, 23, 31, 41, 55, 73, 97, 129, 86, 115, 153, 102, 68, 91, 121, 161, 215, 287, 383, 511, 681, 454, 605, 807, 538, 717, 478, 637, 849, 566, 755, 1007, 1343, 1791, 1194, 796, 1061, 1415, 1887, 1258, 1677, 1118, 1491, 994, 1325, 1767, 1178
Offset: 0

Views

Author

Keywords

Comments

It is an unsolved problem to determine if this sequence is bounded or unbounded.

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.

Crossrefs

Programs

  • Haskell
    a028394 n = a028394_list !! n
    a028394_list = iterate a006369 8  -- Reinhard Zumkeller, Dec 31 2011
  • Maple
    G := proc(n) option remember; if n = 0 then 8 elif 4*G(n-1) mod 3 = 0 then 2*G(n-1)/3 else round(4*G(n-1)/3); fi; end; [ seq(G(i),i=0..80) ];
    f:=proc(N) local n;
    if N mod 3 = 0 then 2*(N/3);
    elif N mod 3 = 2 then 4*((N+1)/3)-1; else
    4*((N+2)/3)-3; fi; end; # N. J. A. Sloane, Feb 04 2011
  • Mathematica
    nxt[n_]:=Module[{m=Mod[n,3]},Which[m==0,(2n)/3,m==1,(4n-1)/3,True,(4n+1)/3]]; NestList[nxt,8,60] (* Harvey P. Dale, Dec 13 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n-1)/3, , (4n+1)/3 ] }, {8}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)

Formula

The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.

A094329 Iterate the map in A006369 starting at 16.

Original entry on oeis.org

16, 21, 14, 19, 25, 33, 22, 29, 39, 26, 35, 47, 63, 42, 28, 37, 49, 65, 87, 58, 77, 103, 137, 183, 122, 163, 217, 289, 385, 513, 342, 228, 152, 203, 271, 361, 481, 641, 855, 570, 380, 507, 338, 451, 601, 801, 534, 356, 475, 633, 422, 563, 751, 1001, 1335, 890, 1187, 1583
Offset: 1

Views

Author

N. J. A. Sloane, Jun 04 2004

Keywords

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.

Crossrefs

Programs

A185589 Iterate the map in A006369 starting at 144.

Original entry on oeis.org

144, 96, 64, 85, 113, 151, 201, 134, 179, 239, 319, 425, 567, 378, 252, 168, 112, 149, 199, 265, 353, 471, 314, 419, 559, 745, 993, 662, 883, 1177, 1569, 1046, 1395, 930, 620, 827, 1103, 1471, 1961, 2615, 3487, 4649, 6199, 8265, 5510, 7347, 4898, 6531, 4354, 5805, 3870, 2580, 1720, 2293, 3057, 2038, 2717, 3623, 4831
Offset: 1

Views

Author

N. J. A. Sloane, Feb 04 2011

Keywords

Comments

Lagarias, page 270, appears to imply that this trajectory has period 12 and smallest element 144, which is not true.

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.

Crossrefs

Programs

A185590 Iterate the map in A006369 starting at 44.

Original entry on oeis.org

44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44
Offset: 1

Views

Author

N. J. A. Sloane, Feb 04 2011

Keywords

Comments

Periodic with period length 12.

References

  • A. O. L. Atkin, Comment on Problem 63-13, SIAM Rev., 8 (1966), 234-236.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270. (beware of typo: Lagarias says the orbit of 144 (not 44) has period 12.)

Crossrefs

Programs

  • Haskell
    a185590 n = a185590_list !! (n-1)
    a185590_list = iterate a006369 44  -- Reinhard Zumkeller, Dec 31 2011
  • Mathematica
    f[n_] := If[Mod[n, 3] == 0, 2*n/3, Round[4*n/3]]; a[1] = 44; a[n_] := a[n] = f[a[n - 1]]; Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Jun 10 2013 *)

A028396 Iterate the map in A006369 starting at 14.

Original entry on oeis.org

14, 19, 25, 33, 22, 29, 39, 26, 35, 47, 63, 42, 28, 37, 49, 65, 87, 58, 77, 103, 137, 183, 122, 163, 217, 289, 385, 513, 342, 228, 152, 203, 271, 361, 481, 641, 855, 570, 380, 507, 338, 451, 601, 801, 534, 356, 475, 633, 422, 563, 751, 1001, 1335, 890, 1187
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

A217729 Trajectory of 40 under the map n-> A006369(n).

Original entry on oeis.org

40, 53, 71, 95, 127, 169, 225, 150, 100, 133, 177, 118, 157, 209, 279, 186, 124, 165, 110, 147, 98, 131, 175, 233, 311, 415, 553, 737, 983, 1311, 874, 1165, 1553, 2071, 2761, 3681, 2454, 1636, 2181, 1454, 1939, 2585, 3447, 2298, 1532, 2043, 1362, 908, 1211, 1615
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end;
    t1:=[40];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {40}; While[n = t[[-1]]; s = Switch[Mod[n, 3], 0, 2*n/3, 1, (4*n - 1)/3, 2, (4*n + 1)/3]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n - 1)/3, , (4n + 1)/3]}, {40}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)

A223083 Trajectory of 64 under the map n-> A006369(n).

Original entry on oeis.org

64, 85, 113, 151, 201, 134, 179, 239, 319, 425, 567, 378, 252, 168, 112, 149, 199, 265, 353, 471, 314, 419, 559, 745, 993, 662, 883, 1177, 1569, 1046, 1395, 930, 620, 827, 1103, 1471, 1961, 2615, 3487, 4649, 6199, 8265, 5510, 7347, 4898, 6531, 4354, 5805
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end;
    t1:=[64];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {64}; While[n = t[[-1]]; s = Switch[Mod[n, 3], 0, 2*n/3, 1, (4*n - 1)/3, 2, (4*n + 1)/3]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n - 1)/3, , (4n + 1)/3]}, {64}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)

A349376 Dirichlet convolution of A006368 with the Dirichlet inverse of A006369, where A006368 is the "amusical permutation", and A006369 is its inverse permutation.

Original entry on oeis.org

1, 0, 0, 1, -3, 5, -4, -2, 1, 11, -7, -7, -7, 14, 7, 4, -10, 2, -11, -22, 10, 25, -14, 16, 7, 25, 0, -26, -17, -41, -18, -8, 17, 36, 34, 7, -21, 39, 17, 52, -24, -52, -25, -48, 1, 50, -28, -36, 8, -51, 24, -48, -31, 7, 62, 60, 27, 61, -35, 136, -35, 64, 0, 16, 62, -93, -39, -70, 34, -178, -42, -26, -42, 75, -27, -74
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Obviously, convolving this sequence with A006369 gives its inverse A006368 from n >= 1 onward.

Crossrefs

Cf. A006368, A006369, A349368, A349377 (Dirichlet inverse), A349378 (sum with it).
Cf. also pairs A349613, A349614 and A349397, A349398 for similar constructions.

Programs

Formula

a(n) = Sum_{d|n} A006368(d) * A349368(n/d).

A349377 Dirichlet convolution of A006369 with the Dirichlet inverse of A006368, where A006368 is the "amusical permutation", and A006369 is its inverse permutation.

Original entry on oeis.org

1, 0, 0, -1, 3, -5, 4, 2, -1, -11, 7, 7, 7, -14, -7, -3, 10, -2, 11, 16, -10, -25, 14, -6, 2, -25, 0, 18, 17, 11, 18, 4, -17, -36, -10, 20, 21, -39, -17, -18, 24, 12, 25, 34, -7, -50, 28, 2, 8, -15, -24, 34, 31, 3, -20, -16, -27, -61, 35, 30, 35, -64, -8, -5, -20, 23, 39, 50, -34, 6, 42, -44, 42, -75, -15, 52, -22, 23
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Obviously, convolving this sequence with A006368 gives its inverse A006369 from n >= 1 onward.

Crossrefs

Cf. A006368, A006369, A349351, A349376 (Dirichlet inverse), A349378 (sum with it).
Cf. also pairs A349613, A349614 and A349397, A349398 for similar constructions.

Programs

Formula

a(n) = Sum_{d|n} A006369(d) * A349351(n/d).
a(n) = A349378(n) - A349376(n).
Showing 1-10 of 36 results. Next