A094328 Iterate the map in A006369 starting at 4.
4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6
Offset: 1
References
- J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 1).
Programs
-
Haskell
a094328 n = a094328_list !! (n-1) a094328_list = iterate a006369 4 -- Reinhard Zumkeller, Dec 31 2011
-
Mathematica
Table[{4, 5, 7, 9, 6}, {21}] // Flatten (* Jean-François Alcover, Jun 10 2013 *) LinearRecurrence[{0, 0, 0, 0, 1},{4, 5, 7, 9, 6},105] (* Ray Chandler, Sep 03 2015 *)
-
PARI
a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,0,0,0]^(n-1)*[4;5;7;9;6])[1,1] \\ Charles R Greathouse IV, Oct 18 2022
Formula
The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.
Periodic with period length 5.
Comments