A028421 Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.
1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ------------------------------------------------------------------------------------ 0: 1 1: 1 2 2: 2 6 3 3: 6 22 18 4 4: 24 100 105 40 5 5: 120 548 675 340 75 6 6: 720 3528 4872 2940 875 126 7 7: 5040 26136 39396 27076 9800 1932 196 8 8: 40320 219168 354372 269136 112245 27216 3822 288 9 9: 362880 2053152 3518100 2894720 1346625 379638 66150 6960 405 10 10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11 ... - _Wolfdieter Lang_, Nov 23 2018
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Eric Weisstein's World of Mathematics, Narumi Polynomial [here for a = -1].
Crossrefs
Row sums give A000254(n+1), n >= 0.
From Johannes W. Meijer, Oct 07 2009: (Start)
A000142, A052517, 3*A000399, 5*A000482 are the first four left hand columns; A000027, A002411 are the first two right hand columns.
Programs
-
Maple
A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end: seq(seq(A028421(n,k), k=0..n), n=0..8); # Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012 egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)): ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)): seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
-
Mathematica
f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
Sage
# uses[riordan_square from A321620] riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019
Formula
E.g.f.: d/dt(-log(1-t)/(1-t)^x). - Vladeta Jovovic, Oct 12 2003
The e.g.f. with offset 1: y = x + (1 + 2*t)*x^2/2! + (2 + 6*t + 3*t^2)*x^3/3! + ... has series reversion with respect to x equal to y - (1 + 2*t)*y^2/2! + (1 + 3*t)^2*y^3/3! - (1 + 4*t)^3*y^4/4! + .... This is an e.g.f. for a signed version of A139526. - Peter Bala, Jul 18 2013
Recurrence: T(n, k) = 0 if n < k; if k = 0 then T(0, 0) = 1 and T(n, 0) = n * T(n-1, 0) for n >= 1, otherwise T(n, k) = n*T(n-1, k) + ((k+1)/k)*T(n-1, k-1). From the unsigned Stirling1 recurrence. - Wolfdieter Lang, Nov 25 2018
Extensions
Edited by Wolfdieter Lang, Nov 23 2018
Comments