cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028475 Total number of Hamiltonian cycles avoiding the root-edge in rooted cubic bipartite planar maps with 2n nodes.

Original entry on oeis.org

1, 4, 20, 114, 712, 4760, 33532, 246146, 1867556, 14557064, 116038672, 942597638, 7781117632, 65131605840, 551825148660, 4725380142050, 40848069782932, 356094155836640, 3127831256055624, 27662285924478844, 246164019830290392, 2203001550262470312, 19817596934324929372
Offset: 1

Views

Author

Valery A. Liskovets, Apr 29 2002

Keywords

Comments

An algorithm for calculating these numbers is known. 2*a(n) can be interpreted as the number of pairs of non-intersecting arch configurations (over and under a straight line) connecting 2n points in the line, where all points are marked + and - alternately, every point belongs to a unique arch and the ends of every arch have different signs.

Examples

			n=2. There are 3 rooted cubic bipartite planar maps with 4 nodes: a quadrangular with two non-adjacent edges doubled (parallel), where one vertex and any of the edges incident to it are taken as the root. No Hamiltonian cycle can avoid the sole edge incident to the root-vertex. For the other two rootings, there are 4 root-edge avoiding Hamiltonian cycles. So a(2)=4.
		

Crossrefs

Formula

a(n) = A116456(n) / 2. - Sean A. Irvine, Feb 01 2020

Extensions

a(21)-a(32) from Cyril Banderier, Nov 06 2022