A334178
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{k}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 1, 3, 1, 8, 1, 4, 11, 1, 16, 1, 7, 19, 41, 1, 32, 1, 11, 71, 91, 153, 1, 64, 1, 18, 176, 769, 436, 571, 1, 128, 1, 29, 539, 2911, 8449, 2089, 2131, 1, 256, 1, 47, 1471, 17753, 48301, 93127, 10009, 7953, 1, 512, 1, 76, 4271, 79808, 603126, 801701, 1027207, 47956, 29681, 1, 1024
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 1, 3, 4, 7, 11, 18, ...
4, 1, 11, 19, 71, 176, 539, ...
8, 1, 41, 91, 769, 2911, 17753, ...
16, 1, 153, 436, 8449, 48301, 603126, ...
32, 1, 571, 2089, 93127, 801701, 20721019, ...
64, 1, 2131, 10009, 1027207, 13307111, 714790675, ...
Columns 0..15 give
A000079,
A000012,
A001835(n+1),
A004253(n+1),
A334135,
A003729,
A334179,
A028478,
A334180,
A028480,
A334181,
A028482,
A334182,
A028484,
A334183,
A028486.
-
T[n_, k_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[k, I*x/2], x]]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 04 2021 *)
-
{T(n, k) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(k, 1, I*x/2)))}
A028486
Number of perfect matchings in graph C_{15} X P_{2n}.
Original entry on oeis.org
1, 1364, 6323504, 35269184041, 207171729355756, 1240837214254999769, 7491895591984935317759, 45390122553039546330628096, 275408624219475075609746445361, 1672150595320335623747680596071399, 10155382441518040205071335049138555724
Offset: 0
- Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.
- Sergey Perepechko, Table of n, a(n) for n = 0..260
- A. M. Karavaev, S. N. Perepechko, Dimer problem on cylinders: recurrences and generating functions, (in Russian), Matematicheskoe Modelirovanie, 2014, V.26, No.11, pp. 18-22.
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- Sergey Perepechko, Generating function for A028486
-
{a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(15, 1, I*x/2)))} \\ Seiichi Manyama, Apr 17 2020
A340476
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Product_{a=1..n} Product_{b=1..k} (4*sin(a*Pi/(2*n+1))^2 + 4*cos(b*Pi/(2*k+1))^2).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 19, 11, 1, 1, 91, 176, 29, 1, 1, 436, 2911, 1471, 76, 1, 1, 2089, 48301, 79808, 11989, 199, 1, 1, 10009, 801701, 4375897, 2091817, 97021, 521, 1, 1, 47956, 13307111, 240378643, 372713728, 53924597, 783511, 1364, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 4, 19, 91, 436, ...
1, 11, 176, 2911, 48301, ...
1, 29, 1471, 79808, 4375897, ...
1, 76, 11989, 2091817, 372713728, ...
-
default(realprecision, 120);
{T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))}
-
{T(n, k) = sqrtint(4^k*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*k, 2, x/2)))}
Showing 1-3 of 3 results.
Comments