cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334178 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{k}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 3, 1, 8, 1, 4, 11, 1, 16, 1, 7, 19, 41, 1, 32, 1, 11, 71, 91, 153, 1, 64, 1, 18, 176, 769, 436, 571, 1, 128, 1, 29, 539, 2911, 8449, 2089, 2131, 1, 256, 1, 47, 1471, 17753, 48301, 93127, 10009, 7953, 1, 512, 1, 76, 4271, 79808, 603126, 801701, 1027207, 47956, 29681, 1, 1024
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2020

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,       1,        1,         1, ...
   2, 1,    3,     4,       7,       11,        18, ...
   4, 1,   11,    19,      71,      176,       539, ...
   8, 1,   41,    91,     769,     2911,     17753, ...
  16, 1,  153,   436,    8449,    48301,    603126, ...
  32, 1,  571,  2089,   93127,   801701,  20721019, ...
  64, 1, 2131, 10009, 1027207, 13307111, 714790675, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[k, I*x/2], x]]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 04 2021 *)
  • PARI
    {T(n, k) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(k, 1, I*x/2)))}

Formula

T(n,2*k) = A103997(n,k) for k > 0.

A028486 Number of perfect matchings in graph C_{15} X P_{2n}.

Original entry on oeis.org

1, 1364, 6323504, 35269184041, 207171729355756, 1240837214254999769, 7491895591984935317759, 45390122553039546330628096, 275408624219475075609746445361, 1672150595320335623747680596071399, 10155382441518040205071335049138555724
Offset: 0

Views

Author

Keywords

Comments

For odd values of m the order of recurrence relation for the number of perfect matchings in C_{m} X P_{2n} graph does not exceed 2^floor(m/2). In general, this estimate is accurate, however the case m = 15 is an exception. This sequence obeys the recurrence relation of order 120. - Sergey Perepechko, Apr 28 2015

References

  • Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.

Crossrefs

Programs

  • PARI
    {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(15, 1, I*x/2)))} \\ Seiichi Manyama, Apr 17 2020

Formula

a(n) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{15}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 17 2020

Extensions

a(10) from Alois P. Heinz, Dec 10 2013

A340476 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Product_{a=1..n} Product_{b=1..k} (4*sin(a*Pi/(2*n+1))^2 + 4*cos(b*Pi/(2*k+1))^2).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 19, 11, 1, 1, 91, 176, 29, 1, 1, 436, 2911, 1471, 76, 1, 1, 2089, 48301, 79808, 11989, 199, 1, 1, 10009, 801701, 4375897, 2091817, 97021, 521, 1, 1, 47956, 13307111, 240378643, 372713728, 53924597, 783511, 1364, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2021

Keywords

Examples

			Square array begins:
  1,  1,     1,       1,         1, ...
  1,  4,    19,      91,       436, ...
  1, 11,   176,    2911,     48301, ...
  1, 29,  1471,   79808,   4375897, ...
  1, 76, 11989, 2091817, 372713728, ...
		

Crossrefs

Column k=0..1 give A000012, A002878.
Main diagonal gives A127606.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))}
    
  • PARI
    {T(n, k) = sqrtint(4^k*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*k, 2, x/2)))}

Formula

T(n,k) = 2^k * sqrt(Resultant(T_{2*n+1}(i*x/2), U_{2*k}(x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).
Showing 1-3 of 3 results.