A038811 Duplicate of A028505.
25, 46, 62, 78, 95, 109, 125, 139, 154, 168, 184, 196, 211, 222, 239, 251, 266, 278, 290
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(3) = 16 because there are 16 primes between 300 and 399 (namely, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397). a(4) = 17 because there are 17 primes between 400 and 499 (401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499).
with(numtheory); A038822 := n->pi(100*n+99)-pi(100*n); seq(A038822(k), k=0..100); # Wesley Ivan Hurt, Oct 03 2013
Table[PrimePi[100n + 99] - PrimePi[100n], {n, 0, 71}] Differences[PrimePi[100 Range[0,100]]] (* Harvey P. Dale, Feb 18 2021 *)
a(n)=sum(i=100*n,100*n+99,isprime(i)) \\ Charles R Greathouse IV, Apr 28 2015
a(n)= my(r=0, p=100*n, q=p+99); while((p=nextprime(p+1))<=q, r+=isprime(p)); r; \\ Ruud H.G. van Tol, Nov 17 2024
Table[ PrimePi[ n*10 ], {n, 1, 66}] (* Robert G. Wilson v *)
a(n)=primepi(10*n) \\ Charles R Greathouse IV, Aug 27 2014
Table[ PrimePi[ n*1000 ], {n, 1, 45}]
a(n)=primepi(1000*n) \\ Charles R Greathouse IV, Apr 29 2015
Table[ PrimePi[ n*10^4 ], {n, 1, 30}]
a(n)=primepi(10000*n) \\ Charles R Greathouse IV, Apr 29 2015
Table[ PrimePi[ n*10^5 ], {n, 1, 30}]
a(n)=primepi(10^5*n) \\ Charles R Greathouse IV, Apr 29 2015
Table[ PrimePi[ n*10^6 ], {n, 1, 30}]
a(n)=primepi(10^6*n) \\ Charles R Greathouse IV, Apr 29 2015
Table[ PrimePi[ n*10^7 ], {n, 1, 30} ]
a(n)=primepi(10^7*n) \\ Charles R Greathouse IV, Apr 29 2015
Table[ PrimePi[ n*10^8 ], {n, 1, 22}]
a(n)=primepi(10^8*n) \\ Charles R Greathouse IV, Apr 29 2015
Table[ PrimePi[ n*10^9 ], {n, 1, 22}]
a(n)=primepi(10^9*n) \\ Charles R Greathouse IV, Apr 29 2015
Comments