cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A185739 Accumulation array of A185738, by antidiagonals.

Original entry on oeis.org

1, 3, 4, 6, 10, 11, 10, 18, 25, 26, 15, 28, 42, 56, 57, 21, 40, 62, 90, 119, 120, 28, 54, 85, 128, 186, 246, 247, 36, 70, 111, 170, 258, 378, 501, 502, 45, 88, 140, 216, 335, 516, 762, 1012, 1013, 55, 108, 172, 266, 417, 660, 1030, 1530, 2035, 2036, 66, 130, 207, 320, 504, 810, 1305, 2056, 3066, 4082, 4083, 78, 154, 245, 378, 596, 966, 1587, 2590, 4106, 6138, 8177, 8178, 91
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2011

Keywords

Comments

This arrays is a member of a chain; see A185738.

Examples

			Northwest corner:
1....3....6....10....15
4....10...18...28....40
11...25...42...62....85
26...56...90...128...170
		

Crossrefs

Rows 1 to 4: A000217, A028562, A140675, 2*A098847
Columns 1 to 3: A000295, A000247, A068293.

Programs

  • Mathematica
    (* See A185738 *)
    f[n_, k_] := (k/2)*(4*(2^n - 1) + (k - 3)*n);
    TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 10}]]  (* Array A185739 *)
    Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 11 2017 *)

Formula

T(n,k) = k*(4*(2^n-1)+(k-3)*n), k>=1, n>=1.

A028561 Numbers k such that k*(k+6) is a palindrome.

Original entry on oeis.org

0, 1, 5, 22, 137, 273, 715, 863, 2731, 8541, 486618, 877173, 1378507, 1731746, 2273915, 2436099, 5401396, 7153679, 7560069, 14529486, 23887419, 23975475, 73114035, 84890503, 88837611, 235680755, 235769755, 272515513, 440021417, 782357262, 1414071397, 2352019439
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0,24*10^6],PalindromeQ[#(#+6)]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 04 2017 *)
  • Python
    from itertools import count, islice
    def ispal(n): s = str(n); return s == s[::-1]
    def agen():
        for k in count(0):
            if ispal(k*(k+6)):
                yield k
    print(list(islice(agen(), 22))) # Michael S. Branicky, Jan 25 2022

Extensions

a(23) and beyond from Michael S. Branicky, Jan 25 2022
Showing 1-2 of 2 results.