cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028725 a(n) = floor(n/2) * floor((n-1)/2) * floor((n-2)/2) * floor((n-3)/2) * floor((n-4)/2) / 12.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 12, 24, 60, 100, 200, 300, 525, 735, 1176, 1568, 2352, 3024, 4320, 5400, 7425, 9075, 12100, 14520, 18876, 22308, 28392, 33124, 41405, 47775, 58800, 67200, 81600, 92480, 110976, 124848, 148257, 165699, 194940, 216600, 252700, 279300
Offset: 0

Views

Author

Keywords

Crossrefs

Bisections: A004282, A004302.

Programs

  • Magma
    [(&*[Floor((n-j)/2):j in [0..4]])/12: n in [0..60]]; // G. C. Greubel, Apr 08 2022
    
  • Mathematica
    Table[(Times@@Floor/@(n/2-Range[0,4]/2))/12,{n,0,50}] (* or *) LinearRecurrence[ {1,5,-5,-10,10,10,-10,-5,5,1,-1}, {0,0,0,0,0,0,1,3,12,24,60}, 50] (* Harvey P. Dale, Jun 26 2012 *)
  • PARI
    concat([0,0,0,0,0,0], Vec(x^6*(x^4+2*x^3+4*x^2+2*x+1)/((x-1)^6*(x+1)^5) + O(x^100))) \\ Colin Barker, Mar 01 2015
    
  • SageMath
    [(1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5) for n in (0..60)] # G. C. Greubel, Apr 08 2022

Formula

a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11), with a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=1, a(7)=3, a(8)=12, a(9)=24, a(10)=60. - Harvey P. Dale, Jun 26 2012
G.f.: x^6*(1+2*x+4*x^2+2*x^3+x^4)/((1-x)^6*(1+x)^5). - Colin Barker, Mar 01 2015
From R. J. Mathar, Sep 23 2021: (Start)
a(2*n+1) = A004282(n-2).
a(2*n) = A004302(n-2).
a(n) = A028724(n)*A002620(n-4)/6. (End)
From G. C. Greubel, Apr 08 2022: (Start)
a(n) = (1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5).
E.g.f.: (1/768)*((45 +36*x +15*x^2 +4*x^3 +x^4)*exp(-x) + (-45 +54*x -33*x^2 + 14*x^3 -5*x^4 +2*x^5)*exp(x)). (End)