cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028881 a(n) = n^2 - 7.

Original entry on oeis.org

2, 9, 18, 29, 42, 57, 74, 93, 114, 137, 162, 189, 218, 249, 282, 317, 354, 393, 434, 477, 522, 569, 618, 669, 722, 777, 834, 893, 954, 1017, 1082, 1149, 1218, 1289, 1362, 1437, 1514, 1593, 1674, 1757, 1842, 1929, 2018, 2109, 2202, 2297, 2394
Offset: 3

Views

Author

Keywords

Comments

a(n), n>=0, with a(0) = -7, a(1) = -6 and a(2) = -3, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 28 for b = 2*n. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 16 2013
The product of two consecutive terms belongs to the sequence. - Klaus Purath, Dec 13 2022 [a(n)*a(n+1) = a(n^2 + n - 7). - Wolfdieter Lang, Dec 15 2022]

Programs

Formula

a(n) = a(n-1) + 2*n - 1, with a(3)=2. - Vincenzo Librandi, Aug 05 2010
G.f.: x^3*(2+3*x-3*x^2)/(1-x)^3. - Colin Barker, Feb 17 2012
E.g.f.: (1/2)*(2*(x^2 + x -7)*exp(x) + 14 + 12*x + 3*x^2). - G. C. Greubel, Aug 19 2017
From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=3} 1/a(n) = (8 - sqrt(7)*Pi*cot(sqrt(7)*Pi))/14.
Sum_{n>=3} (-1)^(n+1)/a(n) = (-10 + 3*sqrt(7)*Pi*cosec(sqrt(7)*Pi))/42. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=3} (1 - 1/a(n)) = (9/(4*sqrt(14)))*sin(2*sqrt(2)*Pi)/sin(sqrt(7)*Pi).
Product_{n>=3} (1 + 1/a(n)) = (3*sqrt(21/2)/5)*sin(sqrt(6)*Pi)/sin(sqrt(7)*Pi). (End)