cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A028846 Numbers whose product of digits is a power of 2.

Original entry on oeis.org

1, 2, 4, 8, 11, 12, 14, 18, 21, 22, 24, 28, 41, 42, 44, 48, 81, 82, 84, 88, 111, 112, 114, 118, 121, 122, 124, 128, 141, 142, 144, 148, 181, 182, 184, 188, 211, 212, 214, 218, 221, 222, 224, 228, 241, 242, 244, 248, 281, 282, 284, 288, 411, 412, 414, 418, 421, 422, 424, 428, 441, 442, 444, 448
Offset: 1

Views

Author

Keywords

Comments

Numbers using only digits 1, 2, 4, and 8. - Michel Lagneau, Dec 01 2010

Examples

			28 is in the sequence because 2*8 = 2^4. - _Michel Lagneau_, Dec 01 2010
		

Crossrefs

Programs

  • Haskell
    a028846 n = a028846_list !! (n-1)
    a028846_list = f [1] where
       f ds = foldr (\d v -> 10 * v + d) 0 ds : f (s ds)
       s [] = [1]; s (8:ds) = 1 : s ds; s (d:ds) = 2*d : ds
    -- Reinhard Zumkeller, Jan 13 2014
    
  • Mathematica
    Select[Range[1000], IntegerQ[Log[2, Times @@ (IntegerDigits[#])]] &] (* Michel Lagneau, Dec 01 2010 *)
  • PARI
    is(n)=#setminus(Set(digits(n)), [1,2,4,8])==0 \\ Charles R Greathouse IV, Apr 24 2025
  • Python
    from itertools import count, islice, product
    def agen(): yield from (int("".join(p)) for d in count(1) for p in product("1248", repeat=d))
    print(list(islice(agen(), 64))) # Michael S. Branicky, Aug 21 2022
    
  • Python
    def A028846(n):
        m = (k:=3*n+1).bit_length()-1>>1
        return sum(10**j<<((k-(1<<(m<<1)))//(3<<(j<<1))&3) for j in range(m)) # Chai Wah Wu, Jun 28 2025
    

Formula

Given a(0) = 0 and n = 4k - r, where 0 <= r <= 3, a(n) = 10*a(k-1) + 2^(3-r). - Clinton H. Dan, Aug 21 2022

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)

A028836 Iterated sum of digits of n is a power of 2.

Original entry on oeis.org

1, 2, 4, 8, 10, 11, 13, 17, 19, 20, 22, 26, 28, 29, 31, 35, 37, 38, 40, 44, 46, 47, 49, 53, 55, 56, 58, 62, 64, 65, 67, 71, 73, 74, 76, 80, 82, 83, 85, 89, 91, 92, 94, 98, 100, 101, 103, 107, 109, 110, 112, 116, 118, 119, 121, 125, 127, 128, 130, 134, 136, 137, 139, 143, 145, 146, 148, 152, 154, 155
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

Conjectures from Colin Barker, Feb 10 2020: (Start)
G.f.: x*(1 + x + 2*x^2 + 4*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
This g.f. follows from the observation that a(n+4) = a(n)+9 and this holds since the iterated sum of digits of N equals the iterated sum of digits of N+9. - Peter Bala, Feb 10 2020

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
Checked by Neven Juric (neven.juric(AT)apis-it.hr), Feb 04 2008
Showing 1-2 of 2 results.