A028916 Friedlander-Iwaniec primes: Primes of form a^2 + b^4.
2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2437
Offset: 1
Keywords
Examples
2 = 1^2 + 1^4. 5 = 2^2 + 1^4. 17 = 4^2 + 1^4 = 1^2 + 2^4.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Art of Problem Solving, Fermat's Two Squares Theorem.
- A. J. C. Cunningham, High quartan factorisations and primes, Messenger of Mathematics, Vol. 36 (1907), pp. 145-174.
- John Friedlander and Henryk Iwaniec, Using a parity-sensitive sieve to count prime values of a polynomial, Proc. Nat. Acad. Sci., Vol. 94 (1997), pp. 1054-1058.
- J. Friedlander and H. Iwaniec, The polynomial x^2 + y^4 captures its primes, arXiv:math/9811185 [math.NT], 1998; Ann. of Math. 148 (1998), 945-1040.
- Charles R Greathouse IV, Tables of special primes.
- Wikipedia, Friedlander-Iwaniec theorem.
Crossrefs
Programs
-
Haskell
a028916 n = a028916_list !! (n-1) a028916_list = map a000040 $ filter ((> 0) . a256852) [1..] -- Reinhard Zumkeller, Apr 11 2015
-
Maple
N:= 10^5: # to get all terms <= N S:= {seq(seq(a^2+b^4, a = 1 .. floor((N-b^4)^(1/2))),b=1..floor(N^(1/4)))}: sort(convert(select(isprime,S),list)); # Robert Israel, Oct 02 2015
-
Mathematica
nn = 10000; t = {}; Do[n = a^2 + b^4; If[n <= nn && PrimeQ[n], AppendTo[t, n]], {a, Sqrt[nn]}, {b, nn^(1/4)}]; Union[t] (* T. D. Noe, Aug 06 2012 *)
-
PARI
list(lim)=my(v=List([2]),t);for(a=1,sqrt(lim\=1),forstep(b=a%2+1, sqrtint(sqrtint(lim-a^2)), 2, t=a^2+b^4;if(isprime(t),listput(v,t)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jun 12 2013
Extensions
Title expanded by Jonathan Sondow, Oct 02 2015
Comments