cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A051138 Divisibility sequence associated with elliptic curve y^2 + y = x^3 - x and point (1, 0).

Original entry on oeis.org

0, 1, 1, -1, -5, -4, 29, 129, -65, -3689, -16264, 113689, 2382785, 7001471, -398035821, -7911171596, 43244638645, 6480598259201, 124106986093951, -5987117709349201, -541051130050800400, -4830209396684261199
Offset: 0

Views

Author

Michael Somos, Oct 12 1999

Keywords

Comments

This is a strong divisibility sequence; that is, if n divides m, then a(n) divides a(m) and moreover for all positive integer n,m a(gcd(n, m)) = gcd(a(n), a(m)).
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = -1, z = -5. - Michael Somos, Jul 07 2014
The elliptic curve y^2 + y = x^3 - x has LMFDB label 37.a1 (Cremona label 37a1). - Michael Somos, Feb 07 2024

Examples

			G.f. = x + x^2 - x^3 - 5*x^4 - 4*x^5 + 29*x^6 + 129*x^7 - 65*x^8 + ...
		

Crossrefs

Programs

Formula

a(n) = (a(n-1) * a(n-3) + a(n-2)^2) / a(n-4).
a(n) = (-a(n-1) * a(n-4) + 5 * a(n-2) * a(n-3)) / a(n-5).
a(2*n + 1) = a(n+2) * a(n)^3 - a(n-1) * a(n+1)^3.
a(2*n) = a(n+2) * a(n) * a(n-1)^2 - a(n) * a(n-2) * a(n+1)^2.
a(-n) = -a(n). a(n) = A006769(2*n). a(n)^2 = A028937(n). |a(n)|^3 = A028939(n) for all n in Z.
0 = a(n)*a(n+4) - a(n+1)*a(n+3) - a(n+2)*a(n+2) for all n in Z. - Michael Somos, Jul 07 2014
0 = a(n)*a(n+5) + a(n+1)*a(n+4) - 5*a(n+2)*a(n+3) for all n in Z. - Michael Somos, Jul 07 2014

A028939 a(n) = denominator of y-coordinate of (2n)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

1, 1, 1, 125, 64, 24389, 2146689, 274625, 50202571769, 4302115807744, 1469451780501769, 13528653463047586625, 343216282443844010111, 63061816101171948456692661, 495133617181351428873673516736
Offset: 1

Views

Author

Keywords

Examples

			8P = (21/25, -69/125).
		

Crossrefs

Cf. A028936, A028937, A028938 (numerator), A028943.

Formula

P=(0, 0), 2P=(1, 0); if kP=(a, b) then (k+1)P = (a' = (b^2-a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028943(2n). - Seiichi Manyama, Nov 19 2016

A028936 Numerator of x-coordinate of (2n)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

1, 2, 6, 21, 161, 1357, 18526, 480106, 12551561, 683916417, 51678803961, 4881674119706, 997454379905326, 213822353304561757, 79799551268268089761, 53139223644814624290821, 36631192030206080565822006, 54202648602164057575419038802
Offset: 1

Views

Author

Keywords

Examples

			4P =(2, -3).
a(3) = 6 = 2*3 = A006720(4)*A006720(5). - _Michael Somos_, Apr 12 2020
		

Crossrefs

Cf. A028937 (denominator), A028938, A028939, A028940.
Cf. A006720.

Programs

Formula

P=(0, 0), 2P=(1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028940(2n). - Seiichi Manyama, Nov 19 2016
0 = a(n)*a(n+6) - 5*a(n+1)*a(n+5) + 4*a(n+2)*a(n+4) - 20*a(n+3)^2 for all n in Z. a(n) = A006720(n+1)*A006720(n+2). - Michael Somos, Apr 12 2020

A028938 Negative of numerator of y-coordinate of (2n)*P where P is generator for rational points on curve y^2 + y = x^3 - x.

Original entry on oeis.org

0, 3, -14, 69, 2065, -28888, 2616119, -332513754, 8280062505, 18784454671297, -10663732503571536, 8938035295591025771, 31636113722016288336230, -41974401721854929811774227, 754388827236735824355996347601
Offset: 1

Views

Author

Keywords

Examples

			4P = (2, -3).
		

Crossrefs

Cf. A028936, A028937, A028939 (denominator), A028942.

Formula

P=(0, 0), 2P=(1, 0); if kP=(a, b) then (k+1)P = (a' = (b^2-a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028942(2n). - Seiichi Manyama, Nov 19 2016
Showing 1-4 of 4 results.