cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007096 Expansion of theta_3 / theta_4.

Original entry on oeis.org

1, 4, 8, 16, 32, 56, 96, 160, 256, 404, 624, 944, 1408, 2072, 3008, 4320, 6144, 8648, 12072, 16720, 22976, 31360, 42528, 57312, 76800, 102364, 135728, 179104, 235264, 307672, 400704, 519808, 671744, 864960, 1109904, 1419456, 1809568, 2299832
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of 2n into parts with 2 types c, c* of each part. The even parts appears with multiplicity 1 for each type. The odd parts appears with multiplicity 2 (cc or c*c* but not cc*, that is, no mixing is allowed). E.g., a(4)=8 because of 44*, 22*, 211, 21*1*, 2*1*1*, 2*11, 111*1*. - Noureddine Chair, Jan 27 2005
a(n) is the number of pairs of overpartitions into odd parts where the sum of all parts is equal to n. - Jeremy Lovejoy, Aug 29 2020

Examples

			G.f. = 1 + 4*q + 8*q^2 + 16*q^3 + 32*q^4 + 56*q^5 + 96*q^6 + 160*q^7 + 256*q^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Self-convolution of A080054. - Vladeta Jovovic, Mar 22 2005

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m)^(-1/4), {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[( QPochhammer[ -q, q^2] / QPochhammer[ q, q^2])^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ (Product[ 1 - (-q)^k, {k, n}] / Product[ 1 - q^k, {k, n}])^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^2, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
  • PARI
    {a(n) = my(A, B); if( n<0, 0, A = 1 + 4*x; for( k=2, n, B = A + x^2 * O(x^k); A += Pol(2 * subst(B, x, x^2)^2 - B - 1/B) / x / 8); polcoeff(A, n))}; /* Michael Somos, Jul 07 2005*/
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)))^2, n))}; /* Michael Somos, Jan 01 2006 */

Formula

Euler transform of period 4 sequence [4, -2, 4, 0, ...]. - Vladeta Jovovic, Mar 22 2005
Expansion of eta(q^2)^6 /(eta(q)^4 * eta(q^4)^2) in powers of q.
Expansion of phi(q) / phi(-q) = chi(q)^2 / chi(-q)^2 = psi(q)^2 / psi(-q)^2 = phi(-q^2)^2 / phi(-q)^2 = phi(q)^2 / phi(-q^2)^2 = chi(-q^2)^2 / chi(-q)^4 = chi(q)^4 / chi(-q^2)^2 = f(q)^2 / f(-q)^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4. - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A028939.
Expansion of Jacobian elliptic function 1 / sqrt(k') in powers of q. - see Fine.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 1 + u^2 - 2*u*v^2. - Michael Somos, Jul 07 2005
Unique solution to f(x^2)^2 = (f(x) + 1 / f(x)) / 2 and f(0)=1, f'(0) nonzero.
G.f.: theta_3 / theta_4 = (Sum_{k} x^k^2) / (Sum_{k} (-x)^k^2) = (Product_{k>0} (1 - x^(4*k - 2)) / ((1 - x^(4*k - 1)) * (1 - x^(4*k - 3)))^2)^2.
A097243(n) = a(4*n). 8*A022577(n) = a(4*n + 2). a(n) = 4*A123655(n) if n>0. Convolution square of A080054.
Empirical: sum(exp(-Pi)^(n-1)*a(n),n=1..infinity) = 2^(1/4). - Simon Plouffe, Feb 20 2011
Empirical : sum(exp(-Pi*sqrt(2))^(n-1)*(-1)^(n+1)*a(n),n=1..infinity) = (-2+2*2^(1/2))^(1/4). - Simon Plouffe, Feb 20 2011
Empirical : sum(exp(-2*Pi)^(n-1)*a(n),n=1..infinity) = 1/2*(8+6*2^(1/2))^(1/4). - Simon Plouffe, Feb 20 2011
a(n) ~ exp(Pi*sqrt(n)) / (4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Aug 28 2015
G.f.: exp(4*Sum_{k>=1} sigma(2*k - 1)*x^(2*k-1)/(2*k - 1)). - Ilya Gutkovskiy, Apr 19 2019

A051138 Divisibility sequence associated with elliptic curve y^2 + y = x^3 - x and point (1, 0).

Original entry on oeis.org

0, 1, 1, -1, -5, -4, 29, 129, -65, -3689, -16264, 113689, 2382785, 7001471, -398035821, -7911171596, 43244638645, 6480598259201, 124106986093951, -5987117709349201, -541051130050800400, -4830209396684261199
Offset: 0

Views

Author

Michael Somos, Oct 12 1999

Keywords

Comments

This is a strong divisibility sequence; that is, if n divides m, then a(n) divides a(m) and moreover for all positive integer n,m a(gcd(n, m)) = gcd(a(n), a(m)).
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = -1, z = -5. - Michael Somos, Jul 07 2014
The elliptic curve y^2 + y = x^3 - x has LMFDB label 37.a1 (Cremona label 37a1). - Michael Somos, Feb 07 2024

Examples

			G.f. = x + x^2 - x^3 - 5*x^4 - 4*x^5 + 29*x^6 + 129*x^7 - 65*x^8 + ...
		

Crossrefs

Programs

Formula

a(n) = (a(n-1) * a(n-3) + a(n-2)^2) / a(n-4).
a(n) = (-a(n-1) * a(n-4) + 5 * a(n-2) * a(n-3)) / a(n-5).
a(2*n + 1) = a(n+2) * a(n)^3 - a(n-1) * a(n+1)^3.
a(2*n) = a(n+2) * a(n) * a(n-1)^2 - a(n) * a(n-2) * a(n+1)^2.
a(-n) = -a(n). a(n) = A006769(2*n). a(n)^2 = A028937(n). |a(n)|^3 = A028939(n) for all n in Z.
0 = a(n)*a(n+4) - a(n+1)*a(n+3) - a(n+2)*a(n+2) for all n in Z. - Michael Somos, Jul 07 2014
0 = a(n)*a(n+5) + a(n+1)*a(n+4) - 5*a(n+2)*a(n+3) for all n in Z. - Michael Somos, Jul 07 2014

A028937 Denominator of x-coordinate of (2n)*P where P = (0,0) is the generator for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

1, 1, 1, 25, 16, 841, 16641, 4225, 13608721, 264517696, 12925188721, 5677664356225, 49020596163841, 158432514799144041, 62586636021357187216, 1870098771536627436025, 41998153797159031581158401, 15402543997324146892198790401
Offset: 1

Views

Author

Keywords

Examples

			a(4) = 25 where 8P = (21/25, -69/125).
		

Crossrefs

Programs

Formula

P=(0, 0), 2P=(1, 0); if kP=(a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028941(2n). - Seiichi Manyama, Nov 19 2016
a(n) = a(-n) = b(n)*b(n+3) - b(n+1)*b(n+2) for all n in Z where b(n) = A006720(n). - Michael Somos, Mar 23 2022

A028936 Numerator of x-coordinate of (2n)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

1, 2, 6, 21, 161, 1357, 18526, 480106, 12551561, 683916417, 51678803961, 4881674119706, 997454379905326, 213822353304561757, 79799551268268089761, 53139223644814624290821, 36631192030206080565822006, 54202648602164057575419038802
Offset: 1

Views

Author

Keywords

Examples

			4P =(2, -3).
a(3) = 6 = 2*3 = A006720(4)*A006720(5). - _Michael Somos_, Apr 12 2020
		

Crossrefs

Cf. A028937 (denominator), A028938, A028939, A028940.
Cf. A006720.

Programs

Formula

P=(0, 0), 2P=(1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028940(2n). - Seiichi Manyama, Nov 19 2016
0 = a(n)*a(n+6) - 5*a(n+1)*a(n+5) + 4*a(n+2)*a(n+4) - 20*a(n+3)^2 for all n in Z. a(n) = A006720(n+1)*A006720(n+2). - Michael Somos, Apr 12 2020

A028938 Negative of numerator of y-coordinate of (2n)*P where P is generator for rational points on curve y^2 + y = x^3 - x.

Original entry on oeis.org

0, 3, -14, 69, 2065, -28888, 2616119, -332513754, 8280062505, 18784454671297, -10663732503571536, 8938035295591025771, 31636113722016288336230, -41974401721854929811774227, 754388827236735824355996347601
Offset: 1

Views

Author

Keywords

Examples

			4P = (2, -3).
		

Crossrefs

Cf. A028936, A028937, A028939 (denominator), A028942.

Formula

P=(0, 0), 2P=(1, 0); if kP=(a, b) then (k+1)P = (a' = (b^2-a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028942(2n). - Seiichi Manyama, Nov 19 2016
Showing 1-5 of 5 results.