cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106282 Primes p such that the polynomial x^3-x^2-x-1 mod p has no zeros; i.e., the polynomial is irreducible over the integers mod p.

Original entry on oeis.org

3, 5, 23, 31, 37, 59, 67, 71, 89, 97, 113, 137, 157, 179, 181, 191, 223, 229, 251, 313, 317, 331, 353, 367, 379, 383, 389, 433, 443, 449, 463, 467, 487, 509, 521, 577, 619, 631, 641, 643, 647, 653, 661, 691, 709, 719, 727, 751, 797, 823, 829, 839, 859, 881
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 3-step sequences, A000073 and A001644.
Primes of the form 3x^2+2xy+4y^2 with x and y in Z. - T. D. Noe, May 08 2005

Crossrefs

Primes in A028952.
Cf. A106276 (number of distinct zeros of x^3-x^2-x-1 mod prime(n)), A106294, A106302 (period of Lucas and Fibonacci 3-step sequence mod prime(n)), A003631 (primes p such that x^2-x-1 is irreducible mod p).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]]
  • PARI
    forprime(p=2,1000,if(#polrootsmod(x^3-x^2-x-1,p)==0,print1(p,", ")));
    /* Joerg Arndt, Jul 19 2012 */

A028953 Theta series of quadratic form (or lattice) with Gram matrix [ 3, 1; 1, 4 ].

Original entry on oeis.org

1, 0, 0, 2, 2, 2, 0, 0, 0, 2, 0, 0, 4, 0, 0, 2, 2, 0, 0, 0, 4, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 6, 2, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 2, 0, 0, 0, 2, 0, 2, 6, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The number of integer solutions (x, y) to 3*x^2 + 2*x*y + 4*y^2, discriminant -44. - Ray Chandler, Jul 12 2014

Examples

			G.f. = 1 + 2*q^3 + 2*q^4 + 2*q^5 + 2*q^9 + 4*q^12 + 2*q^15 + 2*q^16 + 4*q^20 + 2*q^23 + 2*q^25 + 2*q^27 + 2*q^31 + 2*q^33 + 6*q^36 + 2*q^37 + 2*q^44 + 4*q^45 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(44), 1), 87); A[1] + 2*A[4] + 2*A[5] + 2*A[6] + 2*A[10] + 4*A[13] + 2*A[16] + 2*A[17] + 4*A[21] + 2*A[24]; /* Michael Somos, Feb 09 2017 */
  • Mathematica
    r[n_] := Reduce[{x, y}.{{3, 1}, {1, 4}}.{x, y} == n, {x, y}, Integers]; Table[rn = r[n]; Which[rn === False, 0, Head[rn] === Or, Length[rn], Head[rn] === And, 1], {n, 0, 105}] (* Jean-François Alcover, Nov 05 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^11] - 2 q QPochhammer[ q^2] QPochhammer[ q^22], {q, 0, n}]; (* Michael Somos, Feb 09 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep([3, 1; 1, 4], n)[n] * 2)}; /* Michael Somos, Jun 24 2011 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum( k=1, sqrtint( n), 2 * x^k^2, 1 + A) * sum( k=1, sqrtint( n\11), 2 * x^(11*k^2), 1 + A) - 2 * x * eta(x^2 + A) * eta(x^22 + A), n))}; /* Michael Somos, Jun 24 2011 */
    

Formula

Expansion of phi(q) * phi(q^11) - 2*q * f(-q^2) * f(-q^22) = phi(q^3) * phi(q^33) + 2*q^4 * chi(q) * psi(-q^3) * chi(q^11) * psi(-q^33) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos and Alex Berkovich, Jun 24 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (44 t)) = 44^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 24 2011
G.f.: Sum_{n, m in Z} x ^ (3*n*n + 2*n*m + 4*m*m).
a(4*n + 2) = a(11*n + 2) = a(11*n + 6) = a(11*n + 7) = a(11*n + 8) = a(11*n + 10) = 0. - Michael Somos, Feb 23 2012
Showing 1-2 of 2 results.